The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia.
Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
Glob Chang Biol. 2022 Apr;28(7):2296-2311. doi: 10.1111/gcb.16070. Epub 2022 Jan 14.
Extreme climatic events can reshape the functional structure of ecological communities, potentially altering ecological interactions and ecosystem functioning. While these shifts have been widely documented, evidence of their persistence and potential flow-on effects on ecosystem structure following relaxation of extreme events remains limited. Here, we investigate changes in the functional trait structure - encompassing dimensions of resource use, thermal affinity, and body size - of herbivorous fishes in a temperate reef system that experienced an extreme marine heatwave (MHW) and subsequent return to cool conditions. We quantify how changes in the trait structure modified the nature and intensity of herbivory-related functions (macroalgae, turf, and sediment removal), and explored the potential flow-on effects on the recovery dynamics of macroalgal foundation species. The trait structure of the herbivorous fish assemblage shifted as a result of the MHW, from dominance of cool-water browsing species to increased evenness in the distribution of abundance among temperate and tropical guilds supporting novel herbivory roles (i.e. scraping, cropping, and sediment sucking). Despite the abundance of tropical herbivorous fishes and intensity of herbivory-related functions declined following a period of cooling after the MHW, the underlying trait structure displayed limited recovery. Concomitantly, algal assemblages displayed a lack of recovery of the formerly dominant foundational species, the kelp Ecklonia radiata, transitioning to an alternative state dominated by turf and Sargassum spp. Our study demonstrates a legacy effect of an extreme MHW and exemplified the value of monitoring phenotypic (trait mediated) changes in the nature of core ecosystem processes to predict and adapt to the future configurations of changing reef ecosystems.
极端气候事件可以重塑生态群落的功能结构,可能改变生态相互作用和生态系统功能。虽然这些变化已经得到广泛记录,但关于极端事件缓解后它们的持续存在和潜在的后续影响对生态系统结构的影响的证据仍然有限。在这里,我们研究了经历极端海洋热浪 (MHW) 并随后恢复凉爽条件的温带珊瑚礁系统中草食性鱼类的功能特征结构(包括资源利用、热亲和性和体型维度)的变化。我们量化了特征结构的变化如何改变与草食性相关的功能(大型藻类、草皮和沉积物清除)的性质和强度,并探讨了对大型藻类基础物种恢复动态的潜在后续影响。由于 MHW,草食性鱼类的特征结构发生了变化,从冷水觅食物种的优势转变为温带和热带鱼类群落之间丰度分布的均匀度增加,这些群落支持新的草食性作用(即刮擦、修剪和沉积物抽吸)。尽管在 MHW 之后的冷却期,热带草食性鱼类的丰度和与草食性相关的功能的强度下降,但基础特征结构的恢复有限。同时,藻类群落缺乏以前占主导地位的基础物种(Ecklonia radiata)的恢复,过渡到以草皮和 Sargassum spp. 为主的替代状态。我们的研究证明了极端 MHW 的遗留效应,并例证了监测核心生态系统过程性质的表型(特征介导)变化以预测和适应变化的珊瑚礁生态系统未来配置的价值。