Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
Curr Microbiol. 2022 Jan 4;79(2):54. doi: 10.1007/s00284-021-02731-2.
Two-component signal system (TCS) is the predominant bacterial sense-and-response machinery. RpfC/RpfG TCS involved in quorum sensing molecule Diffuse Signal Factor (DSF) signal perception and transduction was well studied in many bacteria. However, whether other environmental factors participating in the signal perception and transduction of RpfC/RpfG was still unclear. Here, we showed that RpfC/RpfG could integrate temperature and DSF signal partially controlling the production of the temperature-dependent protease (SmtP) in S. maltophilia FF11, a strain isolated from frozen Antarctic krill, exhibited spoilage potential due to secret more protease at low temperatures involving in protein degradation. qRT-PCR analysis revealed rpf system mediating approximately 60% transcription activity of Clp, a critical transcription factor linking with LotS/LotR, consisting a signal network controlling completely the SmtP production in previous study. Protease production was partially reduced in rpfF (coding DSF synthetase) mutant strains at 15 °C or 25 °C, not be increased through addition DSF or overexpression RpfF in WT at 37 °C, indicating that DSF was effective for protease production only at low temperatures in S. maltophilia. Additionally, biochemical analysis revealed the enzymatic activity of RpfG from strain FF11 cultured at 37 °C or DSF-deficient strains grown at 25 °C was significantly reduced compared to that of RpfG from strain FF11 cultured at 25 °C. These findings outline an interplay mechanism that allows S. maltophilia to integrate quorum sensing and temperature cues controlling protease production, and imply a potential relationship between two distinct systems of RpfC/RpfG and LotS/LotR.
双组分信号系统 (TCS) 是细菌主要的感应和反应机制。RpfC/RpfG TCS 参与群体感应分子弥散信号因子 (DSF) 的信号感知和转导,在许多细菌中得到了很好的研究。然而,其他环境因素是否参与 RpfC/RpfG 的信号感知和转导仍不清楚。在这里,我们表明 RpfC/RpfG 可以整合温度和 DSF 信号,部分控制嗜麦芽寡养单胞菌 FF11 中依赖于温度的蛋白酶 (SmtP) 的产生,该菌株从冷冻南极磷虾中分离出来,由于在涉及蛋白质降解的低温下分泌更多蛋白酶,表现出腐败潜力。qRT-PCR 分析显示,rpf 系统介导了 Clp 的约 60%转录活性,Clp 是一个关键的转录因子,与 LotS/LotR 相连,构成了一个信号网络,在上一个研究中完全控制 SmtP 的产生。在 15°C 或 25°C 时,rpfF (编码 DSF 合成酶) 突变株中的蛋白酶产量部分减少,在 37°C 时,WT 中通过添加 DSF 或过表达 RpfF 不会增加,表明在嗜麦芽寡养单胞菌中,DSF 仅在低温下对蛋白酶的产生有效。此外,生化分析显示,与 25°C 培养的 FF11 菌株或缺乏 DSF 培养的菌株的 RpfG 相比,37°C 培养的 FF11 菌株的 RpfG 的酶活性显著降低。这些发现概述了一种相互作用机制,使嗜麦芽寡养单胞菌能够整合群体感应和温度线索来控制蛋白酶的产生,并暗示了 RpfC/RpfG 和 LotS/LotR 两个不同系统之间的潜在关系。