Suppr超能文献

用于大规模场所识别的高效3D点云特征学习

Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition.

作者信息

Hui Le, Cheng Mingmei, Xie Jin, Yang Jian, Cheng Ming-Ming

出版信息

IEEE Trans Image Process. 2022;31:1258-1270. doi: 10.1109/TIP.2021.3136714. Epub 2022 Jan 25.

Abstract

Point cloud based retrieval for place recognition is still a challenging problem since the drastic appearance changes of scenes due to seasonal or artificial changes in the environments. Existing deep learning based global descriptors for the retrieval task usually consume a large amount of computational resources ( e.g ., memory), which may not be suitable for the cases of limited hardware resources. In this paper, we develop an efficient point cloud learning network (EPC-Net) to generate global descriptors of point clouds for place recognition. While obtaining good performance, it can greatly reduce computational memory and inference time. First, we propose a lightweight but effective neural network module, called ProxyConv, to aggregate the local geometric features of point clouds. We leverage the adjacency matrix and proxy points to simplify the original edge convolution for lower memory consumption. Then, we design a lightweight grouped VLAD network to form global descriptors for retrieval. Compared with the original VLAD network, we propose a grouped fully connected layer to decompose the high-dimensional vectors into a group of low-dimensional vectors, which can reduce the number of parameters of the network and maintain the discrimination of the feature vector. Finally, we further develop a simple version of EPC-Net, called EPC-Net-L, which consists of two ProxyConv modules and one max pooling layer to aggregate global descriptors. By distilling the knowledge from EPC-Net, EPC-Net-L can obtain discriminative global descriptors for retrieval. Extensive experiments on the Oxford dataset and three in-house datasets demonstrate that our method achieves good results with lower parameters, FLOPs, GPU memory, and shorter inference time. Our code is available at https://github.com/fpthink/EPC-Net.

摘要

基于点云的场所识别检索仍然是一个具有挑战性的问题,因为环境中的季节性或人为变化会导致场景外观发生剧烈变化。现有的基于深度学习的用于检索任务的全局描述符通常会消耗大量计算资源(例如内存),这可能不适用于硬件资源有限的情况。在本文中,我们开发了一种高效的点云学习网络(EPC-Net),以生成用于场所识别的点云全局描述符。在获得良好性能的同时,它可以大大减少计算内存和推理时间。首先,我们提出了一个轻量级但有效的神经网络模块,称为ProxyConv,用于聚合点云的局部几何特征。我们利用邻接矩阵和代理点来简化原始的边缘卷积,以降低内存消耗。然后,我们设计了一个轻量级的分组VLAD网络来形成用于检索的全局描述符。与原始的VLAD网络相比,我们提出了一个分组全连接层,将高维向量分解为一组低维向量,这可以减少网络的参数数量并保持特征向量的辨别力。最后,我们进一步开发了一个简单版本的EPC-Net,称为EPC-Net-L,它由两个ProxyConv模块和一个最大池化层组成,用于聚合全局描述符。通过从EPC-Net中提取知识,EPC-Net-L可以获得用于检索具有辨别力的全局描述符。在牛津数据集和三个内部数据集上进行的大量实验表明,我们的方法在参数、FLOP、GPU内存较低以及推理时间较短的情况下取得了良好的结果。我们的代码可在https://github.com/fpthink/EPC-Net上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验