d'Auvergne Edward James, Griesinger Christian
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
Q Rev Biophys. 2019 Apr 3;52:e3. doi: 10.1017/S0033583519000015.
Large scale functional motions of molecules are studied experimentally using numerous molecular and biophysics techniques, the data from which are subsequently interpreted using diverse models of Brownian molecular dynamics. To unify all rotational physics techniques and motional models, the frame order tensor - a universal statistical mechanics theory based on the rotational ordering of rigid body frames - is herein formulated. The frame ordering is the fundamental physics that governs how motions modulate rotational molecular physics and it defines the properties and maximum information content encoded in the observable physics. Using the tensor to link residual dipolar couplings and pseudo-contact shifts, two distinct information-rich and atomic-level biophysical measurements from the field of nuclear magnetic resonance spectroscopy, to a number of basic mechanical joint models, a highly dynamic state of calmodulin (CaM) bound to a target peptide in a tightly closed conformation was observed. Intra- and inter-domain motions reveal the CaM complex to be entropically primed for peptide release.
利用众多分子和生物物理技术对分子的大规模功能运动进行了实验研究,随后使用布朗分子动力学的各种模型对这些数据进行了解释。为了统一所有旋转物理技术和运动模型,本文提出了框架序张量——一种基于刚体框架旋转排序的通用统计力学理论。框架排序是支配运动如何调节旋转分子物理的基本物理原理,它定义了可观测物理中编码的属性和最大信息量。利用该张量将剩余偶极耦合和伪接触位移(核磁共振光谱领域的两种不同的富含信息且原子水平的生物物理测量)与一些基本的机械关节模型联系起来,观察到钙调蛋白(CaM)与靶肽紧密结合形成紧密闭合构象时的高度动态状态。域内和域间运动表明CaM复合物在熵上有利于肽的释放。