Haneef Romana, Tijhuis Mariken, Thiébaut Rodolphe, Májek Ondřej, Pristaš Ivan, Tolonen Hanna, Gallay Anne
Department of Non-Communicable Diseases and Injuries, Santé Publique France, Saint-Maurice, France.
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
Arch Public Health. 2022 Jan 4;80(1):9. doi: 10.1186/s13690-021-00770-6.
The capacity to use data linkage and artificial intelligence to estimate and predict health indicators varies across European countries. However, the estimation of health indicators from linked administrative data is challenging due to several reasons such as variability in data sources and data collection methods resulting in reduced interoperability at various levels and timeliness, availability of a large number of variables, lack of skills and capacity to link and analyze big data. The main objective of this study is to develop the methodological guidelines calculating population-based health indicators to guide European countries using linked data and/or machine learning (ML) techniques with new methods.
We have performed the following step-wise approach systematically to develop the methodological guidelines: i. Scientific literature review, ii. Identification of inspiring examples from European countries, and iii. Developing the checklist of guidelines contents.
We have developed the methodological guidelines, which provide a systematic approach for studies using linked data and/or ML-techniques to produce population-based health indicators. These guidelines include a detailed checklist of the following items: rationale and objective of the study (i.e., research question), study design, linked data sources, study population/sample size, study outcomes, data preparation, data analysis (i.e., statistical techniques, sensitivity analysis and potential issues during data analysis) and study limitations.
This is the first study to develop the methodological guidelines for studies focused on population health using linked data and/or machine learning techniques. These guidelines would support researchers to adopt and develop a systematic approach for high-quality research methods. There is a need for high-quality research methodologies using more linked data and ML-techniques to develop a structured cross-disciplinary approach for improving the population health information and thereby the population health.
欧洲各国运用数据链接和人工智能来估计和预测健康指标的能力各不相同。然而,利用链接的行政数据估计健康指标具有挑战性,原因如下:数据来源和数据收集方法存在差异,导致各级别之间的互操作性降低以及及时性不足;存在大量变量;缺乏链接和分析大数据的技能与能力。本研究的主要目标是制定基于人群健康指标的计算方法指南,以指导欧洲各国采用新方法使用链接数据和/或机器学习(ML)技术。
我们系统地采用了以下逐步推进的方法来制定方法指南:i. 科学文献综述;ii. 识别欧洲各国的启发性实例;iii. 制定指南内容清单。
我们制定了方法指南,为使用链接数据和/或ML技术生成基于人群健康指标的研究提供了系统方法。这些指南包括以下项目的详细清单:研究的基本原理和目标(即研究问题)、研究设计、链接数据源、研究人群/样本量、研究结果、数据准备、数据分析(即统计技术、敏感性分析以及数据分析过程中的潜在问题)和研究局限性。
这是第一项针对使用链接数据和/或机器学习技术进行人群健康研究制定方法指南的研究。这些指南将支持研究人员采用并开发用于高质量研究方法的系统方法。需要使用更多链接数据和ML技术的高质量研究方法,以开发一种结构化的跨学科方法来改善人群健康信息,进而改善人群健康状况。