Suppr超能文献

医学人工智能指南与标准框架:一项系统综述

Guidelines and standard frameworks for artificial intelligence in medicine: a systematic review.

作者信息

Shiferaw Kirubel Biruk, Roloff Moritz, Balaur Irina, Welter Danielle, Waltemath Dagmar, Zeleke Atinkut Alamirrew

机构信息

Department of Medical Informatics, Institute for Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany.

Luxembourg Centre for Systems Biology, University of Luxembourg, Belvaux L-4367, Luxembourg.

出版信息

JAMIA Open. 2025 Jan 3;8(1):ooae155. doi: 10.1093/jamiaopen/ooae155. eCollection 2025 Feb.

Abstract

OBJECTIVES

The continuous integration of artificial intelligence (AI) into clinical settings requires the development of up-to-date and robust guidelines and standard frameworks that consider the evolving challenges of AI implementation in medicine. This review evaluates the quality of these guideline and summarizes ethical frameworks, best practices, and recommendations.

MATERIALS AND METHODS

The Appraisal of Guidelines, Research, and Evaluation II tool was used to assess the quality of guidelines based on 6 domains: scope and purpose, stakeholder involvement, rigor of development, clarity of presentation, applicability, and editorial independence. The protocol of this review including the eligibility criteria, the search strategy data extraction sheet and methods, was published prior to the actual review with International Registered Report Identifier of DERR1-10.2196/47105.

RESULTS

The initial search resulted in 4975 studies from 2 databases and 7 studies from manual search. Eleven articles were selected for data extraction based on the eligibility criteria. We found that while guidelines generally excel in scope, purpose, and editorial independence, there is significant variability in applicability and the rigor of guideline development. Well-established initiatives such as TRIPOD+AI, DECIDE-AI, SPIRIT-AI, and CONSORT-AI have shown high quality, particularly in terms of stakeholder involvement. However, applicability remains a prominent challenge among the guidelines. The result also showed that the reproducibility, ethical, and environmental aspects of AI in medicine still need attention from both medical and AI communities.

DISCUSSION

Our work highlights the need for working toward the development of integrated and comprehensive reporting guidelines that adhere to the principles of Findability, Accessibility, Interoperability and Reusability. This alignment is essential for fostering a cultural shift toward transparency and open science, which are pivotal milestone for sustainable digital health research.

CONCLUSION

This review evaluates the current reporting guidelines, discussing their advantages as well as challenges and limitations.

摘要

目标

将人工智能(AI)持续整合到临床环境中,需要制定最新且完善的指南和标准框架,以应对医学中AI实施不断演变的挑战。本综述评估了这些指南的质量,并总结了伦理框架、最佳实践和建议。

材料与方法

使用《指南研究与评价II》工具,基于6个领域评估指南质量:范围与目的、利益相关者参与、制定的严谨性、表述的清晰度、适用性和编辑独立性。本综述的方案,包括纳入标准、检索策略、数据提取表和方法,已在实际综述之前发表,国际注册报告识别号为DERR1-10.2196/47105。

结果

初步检索从2个数据库中得到4975项研究,手动检索得到7项研究。根据纳入标准,选择了11篇文章进行数据提取。我们发现,虽然指南在范围、目的和编辑独立性方面通常表现出色,但在适用性和指南制定的严谨性方面存在显著差异。成熟的倡议,如TRIPOD+AI、DECIDE-AI、SPIRIT-AI和CONSORT-AI,已显示出高质量,特别是在利益相关者参与方面。然而,适用性在指南中仍然是一个突出的挑战。结果还表明,医学中AI的可重复性、伦理和环境方面仍需要医学和AI领域的关注。

讨论

我们的工作强调了制定遵循可发现性、可访问性、互操作性和可重用性原则的综合报告指南的必要性。这种一致性对于促进向透明度和开放科学的文化转变至关重要,而透明度和开放科学是可持续数字健康研究的关键里程碑。

结论

本综述评估了当前的报告指南,讨论了它们的优点以及挑战和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe34/11700560/2ab30b2352c4/ooae155f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验