Suppr超能文献

制定一个决策流程图,以确定在治疗早期需要高剂量万古霉素的患者。

Development of a decision flowchart to identify the patients need high-dose vancomycin in early phase of treatment.

作者信息

Yamaguchi Ryo, Kani Hiroko, Yamamoto Takehito, Tanaka Takehiro, Suzuki Hiroshi

机构信息

Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.

The Education Center for Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

出版信息

J Pharm Health Care Sci. 2022 Jan 4;8(1):3. doi: 10.1186/s40780-021-00231-w.

Abstract

BACKGROUND

The standard dose of vancomycin (VCM, 2 g/day) sometimes fails to achieve therapeutic concentration in patients with normal renal function. In this study, we aimed to identify factors to predict patients who require high-dose vancomycin (> 2 g/day) to achieve a therapeutic concentration and to develop a decision flowchart to select these patients prior to VCM administration.

METHODS

Patients who had an estimated creatinine clearance using the Cockcroft-Gault equation (eCCr) of ≥50 mL/min and received intravenous VCM were divided into 2 cohorts: an estimation set (n = 146, from April to September 2016) and a validation set (n = 126, from October 2016 to March 2017). In each set, patients requiring ≤2 g/day of VCM to maintain the therapeutic trough concentration (10-20 μg/mL) were defined as standard-dose patients, while those who needed > 2 g/day were defined as high-dose patients. Univariate and multivariate logistic regression analysis was performed to identify the predictive factors for high-dose patients and decision tree analysis was performed to develop decision flowchart to identify high-dose patients.

RESULTS

Among the covariates analyzed, age and eCCr were identified as independent predictors for high-dose patients. Further, the decision tree analysis revealed that eCCr (cut off value = 81.3 mL/min) is the top predictive factor and is followed by age (cut off value = 58 years). Based on these findings, a decision flowchart was constructed, in which patients with eCCr ≥81.3 mL/min and age < 58 years were designated as high-dose patients and other patients were designated as standard-dose patients. Subsequently, we applied this decision flowchart to the validation set and obtained good predictive performance (positive and negative predictive values are 77.6 and 84.4%, respectively).

CONCLUSION

These results suggest that the decision flowchart constructed in this study provides an important contribution for avoiding underdosing of VCM in patients with eCCr of ≥50 mL/min.

摘要

背景

对于肾功能正常的患者,万古霉素(VCM)的标准剂量(2克/天)有时无法达到治疗浓度。在本研究中,我们旨在确定预测需要高剂量万古霉素(>2克/天)以达到治疗浓度的患者的因素,并制定一个决策流程图,以便在给予VCM之前选择这些患者。

方法

使用Cockcroft-Gault方程估算肌酐清除率(eCCr)≥50毫升/分钟且接受静脉注射VCM的患者被分为两个队列:一个估算集(n = 146,2016年4月至9月)和一个验证集(n = 126,2016年10月至2017年3月)。在每个集合中,将需要≤2克/天的VCM以维持治疗谷浓度(10 - 20微克/毫升)的患者定义为标准剂量患者,而需要>2克/天的患者定义为高剂量患者。进行单因素和多因素逻辑回归分析以确定高剂量患者的预测因素,并进行决策树分析以制定识别高剂量患者的决策流程图。

结果

在分析的协变量中,年龄和eCCr被确定为高剂量患者的独立预测因素。此外,决策树分析显示eCCr(截断值 = 81.3毫升/分钟)是首要预测因素,其次是年龄(截断值 = 58岁)。基于这些发现,构建了一个决策流程图,其中eCCr≥81.3毫升/分钟且年龄<58岁的患者被指定为高剂量患者,其他患者被指定为标准剂量患者。随后,我们将此决策流程图应用于验证集,获得了良好的预测性能(阳性和阴性预测值分别为77.6%和84.4%)。

结论

这些结果表明,本研究构建的决策流程图为避免eCCr≥50毫升/分钟的患者VCM剂量不足做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/923d/8725522/1076d632cf5a/40780_2021_231_Fig1_HTML.jpg

相似文献

1
4
Systemic inflammatory response syndrome criteria and vancomycin dose requirement in patients with sepsis.
Intensive Care Med. 2013 Jul;39(7):1247-52. doi: 10.1007/s00134-013-2909-9. Epub 2013 Apr 20.
5
Clinical applicability of urinary creatinine clearance for determining the initial dose of vancomycin in critically ill patients.
J Infect Chemother. 2022 Feb;28(2):199-205. doi: 10.1016/j.jiac.2021.10.008. Epub 2021 Oct 19.
6
A New Algorithm Optimized for Initial Dose Settings of Vancomycin Using Machine Learning.
Biol Pharm Bull. 2020;43(1):188-193. doi: 10.1248/bpb.b19-00729.

引用本文的文献

本文引用的文献

4
Nephrotoxicity of Antimicrobials and Antibiotics.
Adv Chronic Kidney Dis. 2020 Jan;27(1):31-37. doi: 10.1053/j.ackd.2019.08.001.
5
A New Algorithm Optimized for Initial Dose Settings of Vancomycin Using Machine Learning.
Biol Pharm Bull. 2020;43(1):188-193. doi: 10.1248/bpb.b19-00729.
8
Vancomycin Area Under the Curve and Acute Kidney Injury: A Meta-analysis.
Clin Infect Dis. 2019 Nov 13;69(11):1881-1887. doi: 10.1093/cid/ciz051.
10
Establishment of a new initial dose plan for vancomycin using the generalized linear mixed model.
Theor Biol Med Model. 2017 Apr 8;14(1):8. doi: 10.1186/s12976-017-0054-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验