Bernett Judith, Krupke Dominik, Sadegh Sepideh, Baumbach Jan, Fekete Sándor P, Kacprowski Tim, List Markus, Blumenthal David B
Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
Department of Computer Science, TU Braunschweig, 38106 Braunschweig, Germany.
Bioinformatics. 2022 Mar 4;38(6):1600-1606. doi: 10.1093/bioinformatics/btab876.
Disease module mining methods (DMMMs) extract subgraphs that constitute candidate disease mechanisms from molecular interaction networks such as protein-protein interaction (PPI) networks. Irrespective of the employed models, DMMMs typically include non-robust steps in their workflows, i.e. the computed subnetworks vary when running the DMMMs multiple times on equivalent input. This lack of robustness has a negative effect on the trustworthiness of the obtained subnetworks and is hence detrimental for the widespread adoption of DMMMs in the biomedical sciences.
To overcome this problem, we present a new DMMM called ROBUST (robust disease module mining via enumeration of diverse prize-collecting Steiner trees). In a large-scale empirical evaluation, we show that ROBUST outperforms competing methods in terms of robustness, scalability and, in most settings, functional relevance of the produced modules, measured via KEGG (Kyoto Encyclopedia of Genes and Genomes) gene set enrichment scores and overlap with DisGeNET disease genes.
A Python 3 implementation and scripts to reproduce the results reported in this article are available on GitHub: https://github.com/bionetslab/robust, https://github.com/bionetslab/robust-eval.
Supplementary data are available at Bioinformatics online.
疾病模块挖掘方法(DMMMs)从诸如蛋白质-蛋白质相互作用(PPI)网络等分子相互作用网络中提取构成候选疾病机制的子图。无论采用何种模型,DMMMs在其工作流程中通常都包含不稳健的步骤,即当在等效输入上多次运行DMMMs时,计算得到的子网会有所不同。这种缺乏稳健性对所获得子网的可信度产生负面影响,因此不利于DMMMs在生物医学科学中的广泛应用。
为克服这一问题,我们提出了一种名为ROBUST(通过枚举多样的带权Steiner树进行稳健疾病模块挖掘)的新DMMM。在大规模实证评估中,我们表明ROBUST在稳健性、可扩展性以及在大多数情况下所生成模块的功能相关性方面均优于竞争方法,功能相关性通过KEGG(京都基因与基因组百科全书)基因集富集分数以及与DisGeNET疾病基因的重叠来衡量。
可在GitHub上获取用于重现本文所报告结果的Python 3实现及脚本:https://github.com/bionetslab/robust,https://github.com/bionetslab/robust-eval。
补充数据可在《生物信息学》在线获取。