Suppr超能文献

将固有电荷引入聚集诱导发光研究中。

Bringing Inherent Charges into Aggregation-Induced Emission Research.

机构信息

Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

出版信息

Acc Chem Res. 2022 Jan 18;55(2):197-208. doi: 10.1021/acs.accounts.1c00630. Epub 2022 Jan 5.

Abstract

Charged organic molecules, such as DNA, RNA, proteins, and polysaccharides, are ubiquitous and indispensable in natural living systems, which possess specific biological functions to interact with oppositely charged species via electrostatic attraction. The molecules with inherent charges typically differentiate themselves from the neutral ones with unique attributes (e.g., ionic interactions and high polarity), thereby playing a pivotal role in a broad spectrum of areas, including supramolecular chemistry, structural biology, and materials science. It is thus of great importance to explore and develop various charged organic systems for biomimicry and the creation of functional materials. In 2001, our group reported a peculiar luminogen that exhibited weak emission in solution but had significantly enhanced emission in aggregates, and we, for the first time, coined this phenomenon as aggregation-induced emission (AIE). The AIE concept significantly changes the cognition of the scientific community toward classic photophysical phenomena. Since the discovery of this unusual luminescence phenomenon, AIE luminogens (AIEgens) have attracted extensive attention from researchers in a plethora of disciplines because of their high brightness in aggregates, large Stokes shift, excellent photostability, and good biocompatibility. In the past 10 years, our laboratory has expended a great amount of effort to bring inherent charges into AIE research and acquired fruitful achievements.In this Account, we summarize the progress of charged AIE systems primarily made by our laboratory. We start with a brief introduction to charged AIEgens and then discuss their design strategies from molecular and topological perspectives, respectively. Next, we review the unique properties of charged AIEgens, including D-A interactions, anion-π interactions, and intermolecular electrostatic interactions, with an emphasis on how they differentiate themselves from the neutral analogs. On the one hand, positively charged AIEgens exhibit unique photophysical properties by forming typical donor-acceptor structures to manipulate the emission wavelength or initiate ultralong persistent luminescence. On the other hand, positively charged AIEgens exhibit unique physiochemical properties, such as an adjustable targeting capability toward biological targets and a strong capability for the generation of reactive oxygen species. Furthermore, we showcase the applications of charged AIEgens in imaging and diagnosis, photodynamic therapy, gas separation, and solar desalination. Finally, we conclude this Account with a summary and some perspectives regarding the existing challenges and future directions. We hope that this Account can spark new ideas and inspire scientists from different disciplines to explore this nascent yet promising research area.

摘要

带电有机分子,如 DNA、RNA、蛋白质和多糖,在自然生命系统中无处不在且不可或缺,它们通过静电吸引与相反电荷的物质相互作用,具有特定的生物学功能。具有固有电荷的分子通常通过独特的属性(例如离子相互作用和高极性)与中性分子区分开来,从而在包括超分子化学、结构生物学和材料科学在内的广泛领域发挥着关键作用。因此,探索和开发各种带电有机体系对于仿生学和功能材料的创造至关重要。2001 年,我们小组报道了一种奇特的发光体,其在溶液中发射较弱,但在聚集态中发射显著增强,我们首次将这种现象称为聚集诱导发光(AIE)。AIE 概念极大地改变了科学界对经典光物理现象的认知。自发现这种不寻常的发光现象以来,AIE 发光体(AIEgens)因其在聚集态下的高亮度、大斯托克斯位移、优异的光稳定性和良好的生物相容性而引起了众多学科研究人员的广泛关注。在过去的 10 年中,我们实验室投入了大量精力将固有电荷引入 AIE 研究,并取得了丰硕的成果。在本综述中,我们总结了主要由我们实验室开展的带电 AIE 体系的进展。我们首先简要介绍了带电 AIEgens,然后分别从分子和拓扑学的角度讨论了它们的设计策略。接下来,我们回顾了带电 AIEgens 的独特性质,包括 D-A 相互作用、阴离子-π 相互作用和分子间静电相互作用,并重点讨论了它们与中性类似物的区别。一方面,正电荷 AIEgens 通过形成典型的供体-受体结构来调节发射波长或引发超长持久发光,从而表现出独特的光物理性质。另一方面,正电荷 AIEgens 表现出独特的物理化学性质,例如对生物靶标的可调靶向能力和产生活性氧的强大能力。此外,我们展示了带电 AIEgens 在成像和诊断、光动力治疗、气体分离和太阳能淡化中的应用。最后,我们对现有的挑战和未来的方向进行了总结和展望。我们希望本综述能够激发新的思路,并激励来自不同学科的科学家探索这一新兴但有前途的研究领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验