Borchert M J, Devlin J A, Erlewein S R, Fleck M, Harrington J A, Higuchi T, Latacz B M, Voelksen F, Wursten E J, Abbass F, Bohman M A, Mooser A H, Popper D, Wiesinger M, Will C, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Smorra C, Ulmer S
Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.
Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany.
Nature. 2022 Jan;601(7891):53-57. doi: 10.1038/s41586-021-04203-w. Epub 2022 Jan 5.
The standard model of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe, which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning trap systems. For instance, we previously compared the proton/antiproton magnetic moments with 1.5 parts per billion fractional precision, which improved upon previous best measurements by a factor of greater than 3,000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts per trillion. Our result is based on the combination of four independent long-term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental set-ups incorporating different systematic effects. The final result, [Formula: see text], is consistent with the fundamental charge-parity-time reversal invariance, and improves the precision of our previous best measurement by a factor of 4.3. The measurement tests the standard model at an energy scale of 1.96 × 10 gigaelectronvolts (confidence level 0.68), and improves ten coefficients of the standard model extension. Our cyclotron clock study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEP) for antimatter to less than 1.8 × 10, and enables the first differential test of the WEP using antiprotons. From this interpretation we constrain the differential WEP-violating coefficient to less than 0.030.
粒子物理学的标准模型既极其成功又明显不完整。悬而未决的问题之一是可观测宇宙中物质与反物质惊人的不平衡,这激发了高精度比较物质/反物质共轭体基本性质的实验。我们的实验直接研究质子和反质子的基本性质,在先进的低温潘宁阱系统中进行光谱学研究。例如,我们之前以十亿分之1.5的分数精度比较了质子/反质子的磁矩,比之前的最佳测量精度提高了3000多倍。在此,我们报告质子/反质子荷质比的新比较结果,分数不确定度为万亿分之16。我们的结果基于四项独立的长期研究的综合,记录时间跨度为1.5年。我们使用了不同的测量方法和包含不同系统效应的实验装置。最终结果[公式:见正文]与基本电荷宇称时间反演不变性一致,比我们之前的最佳测量精度提高了4.3倍。该测量在1.96×10吉电子伏特的能量尺度下检验了标准模型(置信水平0.68),并改进了标准模型扩展的十个系数。我们的回旋加速器时钟研究还将介导反物质违反时钟弱等效原理(WEP)的假设相互作用限制在小于1.8×10,并且实现了首次使用反质子对WEP的微分测试。基于此解释,我们将违反WEP的微分系数限制在小于0.030。