Suppr超能文献

人工智能辅助诊断系统提高了子宫颈病变图像诊断的准确性。

An artificial intelligence-assisted diagnostic system improves the accuracy of image diagnosis of uterine cervical lesions.

作者信息

Ito Yu, Miyoshi Ai, Ueda Yutaka, Tanaka Yusuke, Nakae Ruriko, Morimoto Akiko, Shiomi Mayu, Enomoto Takayuki, Sekine Masayuki, Sasagawa Toshiyuki, Yoshino Kiyoshi, Harada Hiroshi, Nakamura Takafumi, Murata Takuya, Hiramatsu Keizo, Saito Junko, Yagi Junko, Tanaka Yoshiaki, Kimura Tadashi

机构信息

Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka 567-0871, Japan.

Department of Obstetrics and Gynecology, Niigata University Graduate School of Medicine, Chuo-ku, Niigata 951-8520, Japan.

出版信息

Mol Clin Oncol. 2022 Feb;16(2):27. doi: 10.3892/mco.2021.2460. Epub 2021 Dec 8.

Abstract

The present study created an artificial intelligence (AI)-automated diagnostics system for uterine cervical lesions and assessed the performance of these images for AI diagnostic imaging of pathological cervical lesions. A total of 463 colposcopic images were analyzed. The traditional colposcopy diagnoses were compared to those obtained by AI image diagnosis. Next, 100 images were presented to a panel of 32 gynecologists who independently examined each image in a blinded fashion and diagnosed them for four categories of tumors. Then, the 32 gynecologists revisited their diagnosis for each image after being informed of the AI diagnosis. The present study assessed any changes in physician diagnosis and the accuracy of AI-image-assisted diagnosis (AISD). The accuracy of AI was 57.8% for normal, 35.4% for cervical intraepithelial neoplasia (CIN)1, 40.5% for CIN2-3 and 44.2% for invasive cancer. The accuracy of gynecologist diagnoses from cervical pathological images, before knowing the AI image diagnosis, was 54.4% for CIN2-3 and 38.9% for invasive cancer. After learning of the AISD, their accuracy improved to 58.0% for CIN2-3 and 48.5% for invasive cancer. AI-assisted image diagnosis was able to improve gynecologist diagnosis accuracy significantly (P<0.01) for invasive cancer and tended to improve their accuracy for CIN2-3 (P=0.14).

摘要

本研究创建了一个用于子宫颈病变的人工智能(AI)自动诊断系统,并评估了这些图像在子宫颈病变AI诊断成像中的性能。共分析了463张阴道镜图像。将传统阴道镜诊断结果与AI图像诊断结果进行比较。接下来,向由32名妇科医生组成的小组展示了100张图像,这些医生以盲法独立检查每张图像,并对四类肿瘤进行诊断。然后,32名妇科医生在得知AI诊断结果后,重新审视了他们对每张图像的诊断。本研究评估了医生诊断的任何变化以及AI图像辅助诊断(AISD)的准确性。AI对正常情况的诊断准确率为57.8%,对宫颈上皮内瘤变(CIN)1为35.4%,对CIN2 - 3为40.5%,对浸润癌为44.2%。在不知道AI图像诊断结果的情况下,妇科医生从宫颈病理图像中做出诊断的准确率,对于CIN2 - 3为54.4%,对于浸润癌为38.9%。在得知AISD后,他们对CIN2 - 3的诊断准确率提高到58.0%,对浸润癌的诊断准确率提高到48.5%。AI辅助图像诊断能够显著提高妇科医生对浸润癌的诊断准确率(P<0.01),并且对于CIN2 - 3有提高其诊断准确率的趋势(P = 0.14)。

相似文献

5
Role of Artificial Intelligence Interpretation of Colposcopic Images in Cervical Cancer Screening.
Healthcare (Basel). 2022 Mar 3;10(3):468. doi: 10.3390/healthcare10030468.
6
Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images.
Mol Clin Oncol. 2019 Dec;11(6):583-589. doi: 10.3892/mco.2019.1932. Epub 2019 Oct 4.
7
The Performance of Artificial Intelligence in Cervical Colposcopy: A Retrospective Data Analysis.
J Oncol. 2022 Jan 5;2022:4370851. doi: 10.1155/2022/4370851. eCollection 2022.
9
Automated Diagnosis of Cervical Intraepithelial Neoplasia in Histology Images via Deep Learning.
Diagnostics (Basel). 2022 Feb 21;12(2):548. doi: 10.3390/diagnostics12020548.
10
Artificial Intelligence in Cervical Cancer Screening and Diagnosis.
Front Oncol. 2022 Mar 11;12:851367. doi: 10.3389/fonc.2022.851367. eCollection 2022.

引用本文的文献

2
3
Artificial intelligence strengthenes cervical cancer screening - present and future.
Cancer Biol Med. 2024 Sep 19;21(10):864-79. doi: 10.20892/j.issn.2095-3941.2024.0198.
4
Diagnostic Efficacy of Enhanced Visual Assessment [Visual Check] for Triaging Cervical Cancer Screen Positive Women.
J Midlife Health. 2024 Apr-Jun;15(2):69-74. doi: 10.4103/jmh.jmh_204_23. Epub 2024 Jul 5.
6
High Precision Cervical Precancerous Lesion Classification Method Based on ConvNeXt.
Bioengineering (Basel). 2023 Dec 15;10(12):1424. doi: 10.3390/bioengineering10121424.
7
Joint Diagnostic Method of Tumor Tissue Based on Hyperspectral Spectral-Spatial Transfer Features.
Diagnostics (Basel). 2023 Jun 8;13(12):2002. doi: 10.3390/diagnostics13122002.
8
Artificial intelligence in colposcopic examination: A promising tool to assist junior colposcopists.
Front Med (Lausanne). 2023 Mar 15;10:1060451. doi: 10.3389/fmed.2023.1060451. eCollection 2023.
10
Diagnosis of Cervical Cancer and Pre-Cancerous Lesions by Artificial Intelligence: A Systematic Review.
Diagnostics (Basel). 2022 Nov 13;12(11):2771. doi: 10.3390/diagnostics12112771.

本文引用的文献

2
Accuracy of the Triple Test Versus Colposcopy for the Diagnosis of Premalignant and Malignant Cervical Lesions.
Asian Pac J Cancer Prev. 2020 Dec 1;21(12):3501-3507. doi: 10.31557/APJCP.2020.21.12.3501.
4
Cervical cancer in low and middle-income countries.
Oncol Lett. 2020 Sep;20(3):2058-2074. doi: 10.3892/ol.2020.11754. Epub 2020 Jun 19.
7
A demonstration of automated visual evaluation of cervical images taken with a smartphone camera.
Int J Cancer. 2020 Nov 1;147(9):2416-2423. doi: 10.1002/ijc.33029. Epub 2020 May 19.
8
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms.
JAMA Netw Open. 2020 Mar 2;3(3):e200265. doi: 10.1001/jamanetworkopen.2020.0265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验