Suppr超能文献

急性卒中的自动定量病变水摄取是恶性脑水肿的预测因子。

Automated quantitative lesion water uptake in acute stroke is a predictor of malignant cerebral edema.

机构信息

Department of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.

出版信息

Eur Radiol. 2022 Apr;32(4):2771-2780. doi: 10.1007/s00330-021-08443-2. Epub 2022 Jan 6.

Abstract

OBJECTIVES

Net water uptake (NWU) has been shown to have a linear relationship with brain edema. Based on an automated-Alberta Stroke Program Early Computed Tomography Score (ASPECTS) technique, we automatically derived NWU from baseline multimodal computed tomography (CT), namely ASPECTS-NWU. We aimed to determine if ASPECTS-NWU can predict the development of malignant cerebral edema (MCE).

METHODS

One hundred and forty-six patients with large-vessel occlusion were retrospectively enrolled. Quantitative NWU based on automated-ASPECTS was measured both on nonenhanced CT (NECT) and CT angiography (CTA), namely NECT-ASPECT-NWU and CTA-ASPECTS-NWU. The correlation between ASPECTS-NWU and cerebral edema (CED) grades was calculated using Spearman rank correlation. Univariate logistic regression was used to assess the effect of radiological and clinical features on MCE, and a multivariable model with significant factors from the univariate regression analysis was built. Receiver operating characteristic (ROC) was obtained and area under curve (AUC) was compared.

RESULTS

CTA-ASPECTS-NWU had a moderate positive correlation with CED grades (r = 0.62; 95% confidence interval [CI], 0.51-0.71; p < 0.001). The CTA-ASPECTS-NWU performed better than the NECT-ASPECTS-NWU with AUC: 0.88 vs. 0.71 (p < 0.001). Multivariable logistic regression model integrating CTA-ASPECTS-NWU, collateral score, and age showed the CTA-ASPECTS-NWU was an independent predictor of MCE with an AUC of 0.94 (95% CI: 0.90-0.98; p < 0.001).

CONCLUSIONS

This study demonstrates that ASPECTS-NWU is a quantitative predictor of MCE after large-vessel occlusion of the middle cerebral artery territory. The multivariable logistic regression model may enhance the identification of patients with MCE needing anti-edematous treatment.

KEY POINTS

• The automated-ASPECTS technique can automatically detect the affected regions with early ischemic changes and NWU could be manually calculated. • The CTA-ASPECTS-NWU performs better than the NECT-ASPECTS-NWU on predicting the development of MCE. • The multivariable logistic regression model may enhance the identification of patients with MCE needing anti-edematous treatment.

摘要

目的

已有研究表明,净水分摄取量(NWU)与脑水肿之间存在线性关系。基于一种自动的阿尔伯塔卒中计划早期计算机断层扫描评分(ASPECTS)技术,我们从基线多模态计算机断层扫描(CT)中自动得出 NWU,即 ASPECTS-NWU。我们旨在确定 ASPECTS-NWU 是否可以预测恶性脑水肿(MCE)的发生。

方法

回顾性纳入 146 例大脑中动脉大血管闭塞患者。基于自动 ASPECTS 的定量 NWU 分别在非增强 CT(NECT)和 CT 血管造影(CTA)上进行测量,分别为 NECT-ASPECT-NWU 和 CTA-ASPECTS-NWU。采用 Spearman 秩相关系数计算 ASPECTS-NWU 与脑水肿(CED)分级之间的相关性。单变量逻辑回归用于评估影像学和临床特征对 MCE 的影响,并对单变量回归分析中具有显著意义的因素建立多变量模型。获得受试者工作特征(ROC)曲线并比较曲线下面积(AUC)。

结果

CTA-ASPECTS-NWU 与 CED 分级呈中度正相关(r=0.62;95%置信区间 [CI]:0.51-0.71;p<0.001)。与 NECT-ASPECTS-NWU 相比,CTA-ASPECTS-NWU 的 AUC 更好:0.88 与 0.71(p<0.001)。整合 CTA-ASPECTS-NWU、侧支评分和年龄的多变量逻辑回归模型表明,CTA-ASPECTS-NWU 是 MCE 的独立预测因素,AUC 为 0.94(95%CI:0.90-0.98;p<0.001)。

结论

本研究表明,ASPECTS-NWU 是大脑中动脉区域大血管闭塞后 MCE 的定量预测指标。多变量逻辑回归模型可能增强对需要抗水肿治疗的 MCE 患者的识别。

关键点

  1. 自动 ASPECTS 技术可自动检测到早期缺血性改变的受累区域,并且可以手动计算 NWU。

  2. CTA-ASPECTS-NWU 在预测 MCE 的发生方面优于 NECT-ASPECTS-NWU。

  3. 多变量逻辑回归模型可能增强对需要抗水肿治疗的 MCE 患者的识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验