Department of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
Eur Radiol. 2022 Apr;32(4):2771-2780. doi: 10.1007/s00330-021-08443-2. Epub 2022 Jan 6.
Net water uptake (NWU) has been shown to have a linear relationship with brain edema. Based on an automated-Alberta Stroke Program Early Computed Tomography Score (ASPECTS) technique, we automatically derived NWU from baseline multimodal computed tomography (CT), namely ASPECTS-NWU. We aimed to determine if ASPECTS-NWU can predict the development of malignant cerebral edema (MCE).
One hundred and forty-six patients with large-vessel occlusion were retrospectively enrolled. Quantitative NWU based on automated-ASPECTS was measured both on nonenhanced CT (NECT) and CT angiography (CTA), namely NECT-ASPECT-NWU and CTA-ASPECTS-NWU. The correlation between ASPECTS-NWU and cerebral edema (CED) grades was calculated using Spearman rank correlation. Univariate logistic regression was used to assess the effect of radiological and clinical features on MCE, and a multivariable model with significant factors from the univariate regression analysis was built. Receiver operating characteristic (ROC) was obtained and area under curve (AUC) was compared.
CTA-ASPECTS-NWU had a moderate positive correlation with CED grades (r = 0.62; 95% confidence interval [CI], 0.51-0.71; p < 0.001). The CTA-ASPECTS-NWU performed better than the NECT-ASPECTS-NWU with AUC: 0.88 vs. 0.71 (p < 0.001). Multivariable logistic regression model integrating CTA-ASPECTS-NWU, collateral score, and age showed the CTA-ASPECTS-NWU was an independent predictor of MCE with an AUC of 0.94 (95% CI: 0.90-0.98; p < 0.001).
This study demonstrates that ASPECTS-NWU is a quantitative predictor of MCE after large-vessel occlusion of the middle cerebral artery territory. The multivariable logistic regression model may enhance the identification of patients with MCE needing anti-edematous treatment.
• The automated-ASPECTS technique can automatically detect the affected regions with early ischemic changes and NWU could be manually calculated. • The CTA-ASPECTS-NWU performs better than the NECT-ASPECTS-NWU on predicting the development of MCE. • The multivariable logistic regression model may enhance the identification of patients with MCE needing anti-edematous treatment.
已有研究表明,净水分摄取量(NWU)与脑水肿之间存在线性关系。基于一种自动的阿尔伯塔卒中计划早期计算机断层扫描评分(ASPECTS)技术,我们从基线多模态计算机断层扫描(CT)中自动得出 NWU,即 ASPECTS-NWU。我们旨在确定 ASPECTS-NWU 是否可以预测恶性脑水肿(MCE)的发生。
回顾性纳入 146 例大脑中动脉大血管闭塞患者。基于自动 ASPECTS 的定量 NWU 分别在非增强 CT(NECT)和 CT 血管造影(CTA)上进行测量,分别为 NECT-ASPECT-NWU 和 CTA-ASPECTS-NWU。采用 Spearman 秩相关系数计算 ASPECTS-NWU 与脑水肿(CED)分级之间的相关性。单变量逻辑回归用于评估影像学和临床特征对 MCE 的影响,并对单变量回归分析中具有显著意义的因素建立多变量模型。获得受试者工作特征(ROC)曲线并比较曲线下面积(AUC)。
CTA-ASPECTS-NWU 与 CED 分级呈中度正相关(r=0.62;95%置信区间 [CI]:0.51-0.71;p<0.001)。与 NECT-ASPECTS-NWU 相比,CTA-ASPECTS-NWU 的 AUC 更好:0.88 与 0.71(p<0.001)。整合 CTA-ASPECTS-NWU、侧支评分和年龄的多变量逻辑回归模型表明,CTA-ASPECTS-NWU 是 MCE 的独立预测因素,AUC 为 0.94(95%CI:0.90-0.98;p<0.001)。
本研究表明,ASPECTS-NWU 是大脑中动脉区域大血管闭塞后 MCE 的定量预测指标。多变量逻辑回归模型可能增强对需要抗水肿治疗的 MCE 患者的识别。
自动 ASPECTS 技术可自动检测到早期缺血性改变的受累区域,并且可以手动计算 NWU。
CTA-ASPECTS-NWU 在预测 MCE 的发生方面优于 NECT-ASPECTS-NWU。
多变量逻辑回归模型可能增强对需要抗水肿治疗的 MCE 患者的识别。