Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
J Am Chem Soc. 2022 Jan 19;144(2):1023-1033. doi: 10.1021/jacs.1c12174. Epub 2022 Jan 7.
The first broad spectrum investigation into the photoenolization/Diels-Alder (PEDA) sequence was carried out using M06-2X/6-31+G(d,p) in conjunction with SMD solvation and supported by experimental UV-vis spectroscopy. A test set of 20 prodienes was chosen to examine the role of the H atom acceptor group (substituted and unsubstituted carbonyl, thiocarbonyl, and imine), the H atom donor group, and bystander ring substituents. As reaction partners for the photogenerated dienes, a diverse test set of 20 dienophiles was examined, comprising electron rich, electron poor, neutral, strain activated, hydrocarbon, and heteroatom-containing molecules including CO and CO. A key finding of this work is the demonstration that the PEDA sequence of carbonyl based prodienes is tolerant of most substitution patterns. Another is that thiocarbonyl derivatives should behave analogously to the carbonyls but are likely to do so much more slowly, due to an inefficient intersystem crossing, an endothermic 1,5-hydrogen atom transfer (HAT) step, and a [1,5] sigmatropic H shift to regenerate the starting material that outcompetes the [4 + 2]cycloaddition. In contrast, the T state of the -alkyl imines displays the incorrect orbital symmetry for 1,5-HAT and is correspondingly accompanied by higher barriers, even in the excited state. However, provided these barriers can be overcome, the remaining steps in the PEDA sequence are predicted to be facile. The Diels-Alder reaction is predicted to be of much broader scope than reported synthetic literature: while electron poor dienophiles are expected to be the most reactive partners, ethylene and electron rich alkenes should react at a synthetically useful rate. CO is predicted to undergo a facile (4 + 1)cheletropic addition instead of the normal [4 + 2]cycloaddition pathway. This unique photoenolization/cheletropic addition (PECA) sequence could provide metal-free access to benzannelated cyclopentanones.
首次使用 M06-2X/6-31+G(d,p) 结合 SMD 溶剂化模型进行了广泛的光烯醇化/Diels-Alder(PEDA)序列研究,并通过实验 UV-vis 光谱进行了支持。选择了 20 个产物烯作为测试集,以研究 H 原子接受基团(取代和未取代的羰基、硫代羰基和亚胺)、H 原子供体基团和旁观者环取代基的作用。作为光生二烯的反应伙伴,测试了 20 种不同的二烯亲电试剂,包括富电子、缺电子、中性、应变激活、烃和含有杂原子的分子,包括 CO 和 CO。这项工作的一个关键发现是证明了基于羰基的产物烯的 PEDA 序列能够耐受大多数取代模式。另一个发现是,硫代羰基衍生物的行为应该类似于羰基,但由于低效的系间窜跃、吸热的 1,5-氢原子转移(HAT)步骤以及[1,5]西格玛重排 H 以再生起始材料,该过程会与[4 + 2]环加成竞争,因此可能会慢得多。相比之下,-烷基亚胺的 T 态显示出不正确的 1,5-HAT 轨道对称性,相应地伴随着更高的能垒,即使在激发态也是如此。然而,只要这些能垒能够克服,PEDA 序列的其余步骤预计将很容易进行。预计 Diels-Alder 反应的范围比报道的合成文献更广泛:尽管缺电子二烯亲电试剂预计是最具反应性的伙伴,但乙烯和富电子烯烃也应该以具有合成有用性的速率反应。预计 CO 将经历一个容易的(4 + 1)螯合加成而不是正常的[4 + 2]环加成途径。这种独特的光烯醇化/螯合加成(PECA)序列可以为苯并环戊烷酮提供无金属的方法。