Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
Acc Chem Res. 2021 Feb 16;54(4):890-902. doi: 10.1021/acs.accounts.0c00814. Epub 2021 Feb 3.
We discuss a number of synthesis routes to complex natural products recently reported from our group. Although the structures are quite varied, we demonstrate the research endeavor as a setting to examine the implementation of cyclizations, cycloadditions, rearrangements, and fragmentations. We showcase how the various transformations enabled access to key core structures and thereby allowed the rapid introduction of complexity. Two different routes to (-)-mitrephorone A, the first case discussed, led to the use of Koser's reagent to effect oxetane formation from diosphenol derivatives. Even though the Diels-Alder cycloaddition reaction represents one of the workhorses of complex molecule synthesis, there are opportunities provided by the complexity of secondary metabolites for discovery, study, and development. In our first approach to (-)-mitrephorone A, Diels-Alder cycloaddition provided access to fused cyclopropanes, while the second synthesis underscored the power of diastereoselective nitrile oxide cycloadditions to access hydroxy ketones. The successful implementation of the second approach required the rigorous stereocontrolled synthesis of tetrasubstituted olefins; this was accomplished by a highly stereoselective Cr-mediated reduction of dienes. The diterpenoid (+)-sarcophytin provided a stage for examining the Diels-Alder cycloaddition of two electron-deficient partners. The study revealed that in the system this unusual combination works optimally with the ,-dienoate and proceeds through an transition state to provide the desired cycloadduct. Our reported pallambin synthesis showcased the use of fulvene as a versatile building block for the core structure. Fulvene decomposition could be outcompeted by employing it as a diene and using a highly reactive dienophile, which affords a bicyclic product that can in turn be subjected to chemo- and stereoselective manipulations. The synthesis route proceeds with a C-H insertion providing the core structure to pallambin A and B. The studies resulting in our synthesis of gelsemoxonine highlight the use of the acid-catalyzed rearrangement/chelotropic extrusion of oxazaspiro[2.4]heptanes to access complex β-lactams, which are otherwise not readily prepared by extant methods in common use. Mechanistic investigations of the intriguing ring contraction supported by computational studies indicate that the reaction involves a concerted cleavage of the N-O bond and cyclopropane ring opening under the extrusion of ethylene. The synthesis of guanacastepenes focused on the use of cyclohexyne in [2+2]-cycloadditions with enolates. The resulting cyclobutene can be enticed to undergo ring opening to give a fused six-seven ring system. The cycloinsertion reaction of cyclohexyne developed for the first time proves useful as a general approach to complex fused ring systems.
我们讨论了最近我们小组报道的一些复杂天然产物的合成途径。尽管结构差异很大,但我们展示了这项研究工作,以考察环化、环加成、重排和片段化的实施情况。我们展示了各种转化如何使关键核心结构得以接近,从而使复杂性得以迅速引入。两种不同的方法可用于合成(-)-mitrephorone A,第一个讨论的案例,导致使用 Koser 试剂从二苯酚衍生物中形成环氧乙烷。尽管 Diels-Alder 环加成反应是复杂分子合成的主要手段之一,但次级代谢物的复杂性为发现、研究和开发提供了机会。在我们合成(-)-mitrephorone A 的第一种方法中,Diels-Alder 环加成提供了得到稠合环丙烷的途径,而第二种合成强调了立体选择性腈氧化物环加成方法获得羟基酮的能力。第二种方法的成功实施需要严格的立体控制的四取代烯烃合成;这是通过高度立体选择性的 Cr 介导的二烯还原来完成的。二萜(+)-sarcophytin 为研究两个缺电子反应物的 Diels-Alder 环加成提供了一个平台。研究表明,在该体系中,这种不寻常的组合与,-二烯酸酯最佳配合,并通过一个 过渡态提供所需的环加成产物。我们报道的 palambin 合成展示了富烯作为核心结构的多功能构建块的用途。通过将富烯用作二烯并使用高反应性的二烯,富烯分解可以与竞争,从而得到可以进一步进行化学和立体选择性操作的双环产物。合成途径通过 C-H 插入进行,提供了核心结构 到 palambin A 和 B。我们合成 gelsemoxonine 的研究突出了酸催化重排/螯合挤出 oxazaspiro[2.4]heptanes 以获得复杂的β-内酰胺的用途,否则这些β-内酰胺不易通过现有方法制备。由计算研究支持的对引人入胜的环收缩的机制研究表明,该反应涉及在乙烯挤出下协同断裂 N-O 键和环丙烷环的开环。guanacastepenes 的合成集中于环己炔在烯醇盐的[2+2]-环加成中的使用。所得的环丁烯可以被诱导向开环以得到稠合的六-七元环系统。首次开发的环己炔环插入反应被证明是一种通用方法,可用于复杂的稠合环系统。