Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
NMR Biomed. 2023 Jun;36(6):e4689. doi: 10.1002/nbm.4689. Epub 2022 Feb 2.
Chemical exchange saturation transfer (CEST) imaging benefits from a longer saturation duration and a higher saturation duty cycle. Dielectric shading effects occur when the radiofrequency (RF) wavelength approaches the object size. Here, we proposed a simultaneous parallel transmission-based CEST (pTx-CEST) sequence to prolongate the saturation duration at a 100% duty cycle and improve the RF saturation homogeneity in CEST imaging. The simultaneous pTx-CEST sequence was implemented by switching the CEST saturation module from the non-pTx to pTx mode, using the pTx functionality with both transmit channels being driven simultaneously (instead of time-interleaved). The optimization of amplitude ratio and phase difference settings between RF channels for best B1 homogeneity was performed in phantoms of two different sizes mimicking the human brain and abdomen. The optimal amplitude and phase settings generating the best B1 homogeneity in the phantoms were used in pTx-CEST scans of the human study. The comparison of the maximum achievable saturation duration between the non-pTx-CEST and pTx-CEST sequences was performed in a protein phantom, healthy volunteers, and a metastatic brain tumor patient. The optimal amplitude ratio and phase difference setting between transmit channels manifested circular and elliptical polarization in the head-sized and abdomen-sized phantoms. In the brain, the maximum saturation durations achieved at a 100% duty cycle using the simultaneous pTx-CEST sequence were prolonged to 2240, 3220, and 4200 ms compared with 980 ms using the non-pTx-CEST sequence at repetition times of 3, 4, and 5 s, respectively. The longer saturation duration helped improve the image contrast between the tumor and the normal tissue in the patient. The optimized elliptical polarization mode saturation pulses yielded improved uniformity of CEST signals acquired from the human abdomen. The proposed simultaneous pTx-CEST sequence enabled essentially arbitrarily long saturation duration at a 100% duty cycle and helped reduce the dielectric shading effects with the optimized RF setting.
化学交换饱和传递(CEST)成像是受益于更长的饱和持续时间和更高的饱和占空比。当射频(RF)波长接近物体尺寸时,会发生介电遮蔽效应。在这里,我们提出了一种基于同时并行传输的 CEST(pTx-CEST)序列,以在 100%占空比下延长饱和持续时间,并提高 CEST 成像中的 RF 饱和均匀性。同时的 pTx-CEST 序列通过将 CEST 饱和模块从非 pTx 切换到 pTx 模式来实现,使用具有两个发射通道同时驱动的 pTx 功能(而不是时间交错)。在模拟人脑和腹部的两个不同尺寸的体模中,对 RF 通道之间的幅度比和相位差设置进行了优化,以获得最佳的 B1 均匀性。在人体研究的 pTx-CEST 扫描中,使用在体模中产生最佳 B1 均匀性的最佳幅度和相位设置。在蛋白质体模、健康志愿者和转移性脑肿瘤患者中,对非 pTx-CEST 和 pTx-CEST 序列之间最大可实现饱和持续时间进行了比较。在头部大小和腹部大小的体模中,发射通道之间的最佳幅度比和相位差设置表现出圆形和椭圆形极化。在大脑中,与非 pTx-CEST 序列相比,在重复时间为 3、4 和 5 秒时,使用同时的 pTx-CEST 序列在 100%占空比下实现的最大饱和持续时间分别延长至 2240、3220 和 4200 ms。更长的饱和持续时间有助于提高患者肿瘤和正常组织之间的图像对比度。优化的椭圆极化模式饱和脉冲提高了从人体腹部采集的 CEST 信号的均匀性。所提出的同时的 pTx-CEST 序列可在 100%占空比下实现实质上任意长的饱和持续时间,并有助于通过优化的 RF 设置减少介电遮蔽效应。