Suppr超能文献

基于压缩感知的前瞻性加速平行射频传输三维化学交换饱和转移成像。

Prospective acceleration of parallel RF transmission-based 3D chemical exchange saturation transfer imaging with compressed sensing.

机构信息

Divison of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland.

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.

出版信息

Magn Reson Med. 2019 Nov;82(5):1812-1821. doi: 10.1002/mrm.27875. Epub 2019 Jun 17.

Abstract

PURPOSE

To develop prospectively accelerated 3D CEST imaging using compressed sensing (CS), combined with a saturation scheme based on time-interleaved parallel transmission.

METHODS

A variable density pseudo-random sampling pattern with a centric elliptical k-space ordering was used for CS acceleration in 3D. Retrospective CS studies were performed with CEST phantoms to test the reconstruction scheme. Prospectively CS-accelerated 3D-CEST images were acquired in 10 healthy volunteers and 6 brain tumor patients with an acceleration factor (R ) of 4 and compared with conventional SENSE reconstructed images. Amide proton transfer weighted (APTw) signals under varied RF saturation powers were compared with varied acceleration factors.

RESULTS

The APTw signals obtained from the CS with acceleration factor of 4 were well-preserved as compared with the reference image (SENSE R = 2) both in retrospective phantom and prospective healthy volunteer studies. In the patient study, the APTw signals were significantly higher in the tumor region (gadolinium [Gd]-enhancing tumor core) than in the normal tissue (p < .001). There was no significant APTw difference between the CS-accelerated images and the reference image. The scan time of CS-accelerated 3D APTw imaging was dramatically reduced to 2:10 minutes (in-plane spatial resolution of 1.8 1.8 mm ; 15 slices with 4-mm slice thickness) as compared with SENSE (4:07 minutes).

CONCLUSION

Compressed sensing acceleration was successfully extended to 3D-CEST imaging without compromising CEST image quality and quantification. The CS-based CEST imaging can easily be integrated into clinical protocols and would be beneficial for a wide range of applications.

摘要

目的

开发基于压缩感知(CS)的前瞻性加速 3D CEST 成像,结合基于时交错并行传输的饱和方案。

方法

在 3D 中使用具有中心椭圆 k 空间排序的可变密度伪随机采样模式进行 CS 加速。使用 CEST 体模进行回顾性 CS 研究以测试重建方案。在 10 名健康志愿者和 6 名脑肿瘤患者中采集前瞻性 CS 加速 3D-CEST 图像,加速因子(R)为 4,并与常规 SENSE 重建图像进行比较。比较了不同 RF 饱和功率下的酰胺质子转移加权(APTw)信号与不同加速因子的关系。

结果

与参考图像(SENSE R=2)相比,在回顾性体模和前瞻性健康志愿者研究中,使用加速因子为 4 的 CS 获得的 APTw 信号得到了很好的保留。在患者研究中,肿瘤区域(钆增强肿瘤核心)的 APTw 信号明显高于正常组织(p<.001)。CS 加速图像与参考图像之间的 APTw 信号无显著差异。与 SENSE(4:07 分钟)相比,CS 加速 3D APTw 成像的扫描时间大大缩短至 2:10 分钟(平面空间分辨率为 1.8×1.8mm;15 个切片,厚度为 4mm)。

结论

成功地将压缩感知加速扩展到 3D-CEST 成像,而不会影响 CEST 图像质量和定量。基于 CS 的 CEST 成像可以轻松集成到临床方案中,并将有益于广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验