Suppr超能文献

基于核形态学的卵巢癌准确诊断的深度混合学习管道。

A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology.

机构信息

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.

Homi Bhaba National Institute, Mumbai, India.

出版信息

PLoS One. 2022 Jan 7;17(1):e0261181. doi: 10.1371/journal.pone.0261181. eCollection 2022.

Abstract

Nuclear morphological features are potent determining factors for clinical diagnostic approaches adopted by pathologists to analyze the malignant potential of cancer cells. Considering the structural alteration of the nucleus in cancer cells, various groups have developed machine learning techniques based on variation in nuclear morphometric information like nuclear shape, size, nucleus-cytoplasm ratio and various non-parametric methods like deep learning have also been tested for analyzing immunohistochemistry images of tissue samples for diagnosing various cancers. We aim to correlate the morphometric features of the nucleus along with the distribution of nuclear lamin proteins with classical machine learning to differentiate between normal and ovarian cancer tissues. It has already been elucidated that in ovarian cancer, the extent of alteration in nuclear shape and morphology can modulate genetic changes and thus can be utilized to predict the outcome of low to a high form of serous carcinoma. In this work, we have performed exhaustive imaging of ovarian cancer versus normal tissue and developed a dual pipeline architecture that combines the matrices of morphometric parameters with deep learning techniques of auto feature extraction from pre-processed images. This novel Deep Hybrid Learning model, though derived from classical machine learning algorithms and standard CNN, showed a training and validation AUC score of 0.99 whereas the test AUC score turned out to be 1.00. The improved feature engineering enabled us to differentiate between cancerous and non-cancerous samples successfully from this pilot study.

摘要

核形态特征是病理学家采用的临床诊断方法分析癌细胞恶性潜能的有力决定因素。考虑到癌细胞核的结构改变,许多研究小组已经开发了基于核形态计量信息(如核形状、大小、核质比等)变化的机器学习技术,并且还测试了各种非参数方法,如深度学习,以分析组织样本的免疫组织化学图像,用于诊断各种癌症。我们旨在通过经典机器学习方法将核的形态特征与核层粘连蛋白的分布相关联,以区分正常组织和卵巢癌组织。已经阐明,在卵巢癌中,核形状和形态的改变程度可以调节遗传变化,因此可以用于预测低至高形式的浆液性癌的结果。在这项工作中,我们对卵巢癌与正常组织进行了详尽的成像,并开发了一种双重管道架构,该架构将形态计量参数矩阵与预处理图像的自动特征提取深度学习技术相结合。尽管这种新型的深度学习混合模型源自经典的机器学习算法和标准的卷积神经网络,但它的训练和验证 AUC 评分达到了 0.99,而测试 AUC 评分则达到了 1.00。改进的特征工程使我们能够成功地从这项初步研究中区分癌症和非癌症样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f78/8741040/78e98799f428/pone.0261181.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验