Key Laboratory of Karst Dynamics, Ministry of Natural Resources &Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, No. 50, Qixing Road, Guangxi, Guilin 541004, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China.
Key Laboratory of Karst Dynamics, Ministry of Natural Resources &Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, No. 50, Qixing Road, Guangxi, Guilin 541004, China.
Water Res. 2022 Feb 15;210:118000. doi: 10.1016/j.watres.2021.118000. Epub 2021 Dec 23.
The nitrate (NO) contamination of karst aquifers as an important drinking water reservoir is increasing globally. Understanding the behavior of nitrogen (N) in karst aquifers is imperative for effective groundwater quality management. This study combined multiple stable isotopes (δH-HO, δO-HO, δC-DIC, δN-NO, and δO-NO), including hydro-chemical data, with a tracer test and a Bayesian isotope mixing (SIAR) model to elucidate the NO sources and N cycling within the Babu karst aquifer in Guizhou Province, Southwest China. Nitrate isotopes and SIAR model revealed that manure and sewage, nitrogen fertilizer, and soil organic nitrogen were the three dominant NO sources in winter, contributing to 37%, 32%, and 31% to spring NO, and 38%, 31%, and 31% to surface water NO, respectively. The δO-NO values of sampled waters ranging from 0.3‰ to 13.7‰ (mean of 7.7 ± 3.0‰; N = 63) and the significant negative correlations between δN-NO and δC-DIC in the spring waters (P < 0.01) revealed that nitrification was the primary N transformation process in the Babu watershed. Whereas, denitrification might still occur locally, confirmed by the enriched values of δN-NO (14.3 ± 7.6‰; N = 6) and high denitrification extent (46.6 ± 22.2%; N = 6) in the springs from residential areas, and by elevated δC-DIC (-11.2 ± 0.6‰; N = 26) and δN-NO values (18.9 ± 5.2‰; N = 26) in the boreholes. During the base flow period, point-inputs of the AMD-impacted stream and sewage waters, and short transit time (<5 days) were conducive to nitrification processes in the karst conduit, resulting in elevated NO concentration and NO/Cl ratio at the watershed outlet. Approximately 50% of NO flux at the outlet was derived from nitrification, indicating that a significant extent of nitrification occurred in the NH-contaminated karst conduit, which may be a new NO source to receiving rivers and lakes. This study provided an integrated method for exploring the N dynamics in contaminated karst aquifers. Moreover, the study highlighted that the point N sources control required particular attention for groundwater protection and restoration.
硝酸盐(NO)污染作为重要饮用水源的喀斯特含水层在全球范围内呈上升趋势。了解氮(N)在喀斯特含水层中的行为对于有效进行地下水质量管理至关重要。本研究结合了多种稳定同位素(δH-HO、δO-HO、δC-DIC、δN-NO 和 δO-NO),包括水化学数据、示踪试验和贝叶斯同位素混合(SIAR)模型,以阐明中国西南部贵州省坝布喀斯特含水层中的 NO 来源和 N 循环。硝酸盐同位素和 SIAR 模型表明,粪肥和污水、氮肥和土壤有机氮是冬季三种主要的 NO 来源,分别占春季 NO 的 37%、32%和 31%,占地表水 NO 的 38%、31%和 31%。采样水样的 δO-NO 值范围为 0.3‰ 至 13.7‰(平均值为 7.7±3.0‰;N=63),以及春季水样中 δN-NO 与 δC-DIC 之间存在显著的负相关性(P<0.01),表明硝化作用是坝布流域的主要 N 转化过程。然而,由于来自居民区的泉水具有较高的 δN-NO 值(14.3±7.6‰;N=6)和高反硝化程度(46.6±22.2%;N=6),以及 26 个钻孔中升高的 δC-DIC(-11.2±0.6‰;N=26)和 δN-NO 值(18.9±5.2‰;N=26),反硝化作用可能仍然在局部发生。在基流期间,AMD 影响溪流和污水的点输入以及<5 天的短停留时间有利于喀斯特管道中的硝化过程,导致流域出口处 NO 浓度和 NO/Cl 比值升高。出口处约 50%的 NO 通量来自硝化作用,表明在 NH 污染的喀斯特管道中发生了相当程度的硝化作用,这可能是受纳河流和湖泊的一个新的 NO 来源。本研究提供了一种综合方法来探索受污染的喀斯特含水层中的 N 动态。此外,该研究强调需要特别注意点源 N 控制,以保护和恢复地下水。