Suppr超能文献

巨噬细胞和肝癌细胞系中高硬度亚微米微凝胶的机械敏感内吞作用

Mechanosensitive Endocytosis of High-Stiffness, Submicron Microgels in Macrophage and Hepatocarcinoma Cell Lines.

作者信息

Kruger Terra M, Givens Brittany E, Lansakara Thiranjeewa I, Bell Kendra J, Mohapatra Himansu, Salem Aliasger K, Tivanski Alexei V, Stevens Lewis L

机构信息

Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States.

Department of Chemical and Biochemical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242, United States.

出版信息

ACS Appl Bio Mater. 2018 Nov 19;1(5):1254-1265. doi: 10.1021/acsabm.8b00111. Epub 2018 Oct 24.

Abstract

The mechanical properties of submicron particles offer a unique design space for advanced drug-delivery particle engineering. However, the recognition of this potential is limited by a poor consensus about both the specificity and sensitivity of mechanosensitive endocytosis over a broad particle stiffness range. In this report, our model series of polystyrene--poly(-isopropylacrylamide) (pS--NIPAM) microgels have been prepared with a nominally constant monomer composition (50 mol % styrene and 50 mol % NIPAM) with varied bis-acrylamide cross-linking densities to introduce a tuned spectrum of particle mechanics without significant variation in particle size and surface charge. While previous mechanosensitive studies use particles with moduli ranging from 15 kPa to 20 MPa, the pS--NIPAM particles have Young's moduli () ranging from 300 to 700 MPa, which is drastically stiffer than these previous studies as well as pure pNIPAM. Despite this elevated stiffness, particle uptake in RAW264.7 murine macrophages displays a clear stiffness dependence, with a significant increase in particle uptake for our softest microgels after a 4 h incubation. Preferential uptake of the softest microgel, pS--NIPAM-1 ( = 310 kPa), was similarly observed with nonphagocytic HepG2 hepatoma cells; however, the uptake kinetics were distinct relative to that observed for RAW264.7 cells. Pharmacological inhibitors, used to probe for specific routes of particle internalization, identify actin- and microtubule-dependent pathways in RAW264.7 cells as sensitive particle mechanics. For our pS--NIPAM particles at nominally 300-400 nm in size, this microtubule-dependent pathway was interpreted as a phagocytic route. For our high-stiffness microgel series, this study provides evidence of cell-specific, mechanosensitive endocytosis in a distinctly new stiffness regime that will further broaden the functional landscape of mechanics as a design space for particle engineering.

摘要

亚微米颗粒的机械性能为先进的药物递送颗粒工程提供了独特的设计空间。然而,由于在较宽的颗粒硬度范围内,对机械敏感内吞作用的特异性和敏感性缺乏共识,这一潜力尚未得到充分认识。在本报告中,我们制备了一系列聚苯乙烯-聚(N-异丙基丙烯酰胺)(pS-NIPAM)微凝胶,其名义上具有恒定的单体组成(50摩尔%苯乙烯和50摩尔%NIPAM),并通过改变双丙烯酰胺交联密度来引入一系列经过调整的颗粒力学性能,同时颗粒大小和表面电荷没有显著变化。虽然之前的机械敏感研究使用的颗粒模量范围为15 kPa至20 MPa,但pS-NIPAM颗粒的杨氏模量(E)范围为300至700 MPa,比之前的研究以及纯pNIPAM颗粒要硬得多。尽管硬度有所提高,但RAW264.7小鼠巨噬细胞对颗粒的摄取显示出明显的硬度依赖性,在4小时孵育后,最软的微凝胶颗粒摄取量显著增加。在非吞噬性HepG2肝癌细胞中也观察到了对最软微凝胶pS-NIPAM-1(E = 310 kPa)的优先摄取;然而,摄取动力学相对于RAW264.7细胞有所不同。用于探究颗粒内化特定途径的药理抑制剂表明,RAW264.7细胞中依赖肌动蛋白和微管的途径对颗粒力学敏感。对于我们名义尺寸为300-400 nm的pS-NIPAM颗粒,这种依赖微管的途径被解释为吞噬途径。对于我们的高硬度微凝胶系列,本研究提供了在一个全新的硬度范围内细胞特异性、机械敏感内吞作用的证据,这将进一步拓宽力学作为颗粒工程设计空间的功能领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验