Suppr超能文献

全景舌成像和深度学习卷积机器模型在人类糖尿病诊断中的应用。

Panoramic tongue imaging and deep convolutional machine learning model for diabetes diagnosis in humans.

机构信息

Department of Electronics and Communication Engineering, Jai Shriram Engineering College, Tiruppur, Tamil Nadu, 638 660, India.

Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603 110, India.

出版信息

Sci Rep. 2022 Jan 7;12(1):186. doi: 10.1038/s41598-021-03879-4.

Abstract

Diabetes is a serious metabolic disorder with high rate of prevalence worldwide; the disease has the characteristics of improper secretion of insulin in pancreas that results in high glucose level in blood. The disease is also associated with other complications such as cardiovascular disease, retinopathy, neuropathy and nephropathy. The development of computer aided decision support system is inevitable field of research for disease diagnosis that will assist clinicians for the early prognosis of diabetes and to facilitate necessary treatment at the earliest. In this research study, a Traditional Chinese Medicine based diabetes diagnosis is presented based on analyzing the extracted features of panoramic tongue images such as color, texture, shape, tooth markings and fur. The feature extraction is done by Convolutional Neural Network (CNN)-ResNet 50 architecture, and the classification is performed by the proposed Deep Radial Basis Function Neural Network (RBFNN) algorithm based on auto encoder learning mechanism. The proposed model is simulated in MATLAB environment and evaluated with performance metrics-accuracy, precision, sensitivity, specificity, F1 score, error rate, and receiver operating characteristics (ROC). On comparing with existing models, the proposed CNN based Deep RBFNN machine learning classifier model outperformed with better classification performance and proving its effectiveness.

摘要

糖尿病是一种严重的代谢紊乱疾病,全球发病率很高;该疾病的特征是胰腺中胰岛素分泌不当,导致血液中的葡萄糖水平升高。该疾病还与其他并发症相关,如心血管疾病、视网膜病变、神经病变和肾病。计算机辅助决策支持系统的开发是疾病诊断不可避免的研究领域,将有助于临床医生对糖尿病进行早期预后,并尽早进行必要的治疗。在这项研究中,提出了一种基于中医的糖尿病诊断方法,该方法基于分析全景舌图像的颜色、纹理、形状、齿痕和舌苔等特征。特征提取是通过卷积神经网络(CNN)-ResNet 50 架构完成的,分类是通过基于自动编码器学习机制的深度径向基函数神经网络(RBFNN)算法完成的。该模型在 MATLAB 环境中进行模拟,并通过准确性、精度、敏感性、特异性、F1 分数、误差率和接收者操作特征(ROC)等性能指标进行评估。与现有模型相比,提出的基于 CNN 的深度 RBFNN 机器学习分类器模型表现更好,具有更好的分类性能,证明了其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/528f/8741765/3ece2c67d0f3/41598_2021_3879_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验