Suppr超能文献

氮素供应通过优先改变秸秆碳同化微生物群落来调节土壤有机质的激发效应。

Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community.

机构信息

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China.

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; School of Life Science, Shanxi Datong University, Datong 037009, China.

出版信息

Sci Total Environ. 2022 Apr 1;815:152882. doi: 10.1016/j.scitotenv.2021.152882. Epub 2022 Jan 5.

Abstract

Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.

摘要

秸秆还田增加了土壤碳(C)的固存,但可能会引发激发效应(PE),即加速土壤有机质的分解。PE 的方向和幅度以及秸秆添加对 C 平衡的影响取决于氮(N)的有效性和土壤管理历史。本研究使用 C 标记的玉米秸秆,通过向三种具有不同耕作和施肥历史的土壤(i)未施肥土壤(未施肥)、ii)8 年厩肥处理土壤(施肥)和 iii)弃耕地土壤(弃耕)中添加秸秆和/或矿物 N,进行了 56 天的培养实验,以确定 PE 的动态及其背后的微生物机制。采用 C-PLFA(磷脂脂肪酸)分析来鉴定利用秸秆的微生物类群,并探索它们对 PE 的贡献。秸秆添加增加了微生物生物量(MBC)、与 C 和 N 循环相关的酶活性,并改变了微生物群落组成。由于秸秆添加激活的微生物,导致 SOC 分解增强,从而产生了正的累积 PE,范围为 494 至 789μg C g 土壤。由于 MBC 和酶活性较大,施肥土壤中的正 PE 和秸秆分解的幅度高于未施肥和弃耕土壤,导致净 SOC 增益较低。与单独添加秸秆相比,秸秆与 N 肥结合添加并没有影响 MBC,但增加了正 PE(平均增加 18.1%)和秸秆分解(17.1%),进一步限制了 SOC 的增益。添加 N 肥后,C 标记的真菌:细菌比值和革兰氏阳性(G+):革兰氏阴性(G-)细菌比值随着 PE 的增加而增加,但土壤衍生(未标记)PLFA 保持稳定。随机森林分析进一步表明,秸秆 C 同化微生物特征是驱动 N 添加后更大 PE 的重要预测因子。本研究强调了在耕作土壤中,N 诱导的 PE 中,秸秆 C 同化真菌和 G+细菌的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验