Vilcek Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York, USA.
Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York, USA.
Magn Reson Med. 2022 May;87(5):2536-2550. doi: 10.1002/mrm.29148. Epub 2022 Jan 9.
To develop a deep learning approach to estimate the local capillary-level input function (CIF) for pharmacokinetic model analysis of DCE-MRI.
A deep convolutional network was trained with numerically simulated data to estimate the CIF. The trained network was tested using simulated lesion data and used to estimate voxel-wise CIF for pharmacokinetic model analysis of breast DCE-MRI data using an abbreviated protocol from women with malignant (n = 25) and benign (n = 28) lesions. The estimated parameters were used to build a logistic regression model to detect the malignancy.
The pharmacokinetic parameters estimated using the network-predicted CIF from our breast DCE data showed significant differences between the malignant and benign groups for all parameters. Testing the diagnostic performance with the estimated parameters, the conventional approach with arterial input function (AIF) showed an area under the curve (AUC) between 0.76 and 0.87, and the proposed approach with CIF demonstrated similar performance with an AUC between 0.79 and 0.81.
This study shows the feasibility of estimating voxel-wise CIF using a deep neural network. The proposed approach could eliminate the need to measure AIF manually without compromising the diagnostic performance to detect the malignancy in the clinical setting.
开发一种深度学习方法来估计 DCE-MRI 药代动力学分析的局部毛细血管水平输入函数 (CIF)。
使用数值模拟数据训练深度卷积网络来估计 CIF。使用模拟病变数据对训练好的网络进行测试,并用于估计使用简化协议从患有恶性(n=25)和良性(n=28)病变的女性的乳腺 DCE-MRI 数据进行药代动力学模型分析的体素级 CIF。使用所估计的参数构建逻辑回归模型以检测恶性肿瘤。
使用网络预测的 CIF 从我们的乳腺 DCE 数据估计的药代动力学参数在恶性和良性组之间显示出所有参数的显著差异。使用估计的参数测试诊断性能,使用动脉输入函数 (AIF) 的常规方法的曲线下面积 (AUC) 在 0.76 到 0.87 之间,而使用 CIF 的建议方法的 AUC 在 0.79 到 0.81 之间表现出类似的性能。
本研究表明使用深度神经网络估计体素级 CIF 的可行性。该方法可以消除手动测量 AIF 的需要,而不会影响在临床环境中检测恶性肿瘤的诊断性能。