Suppr超能文献

使用深度学习方法估计乳腺动态对比增强 MRI 的毛细血管水平输入函数。

Estimation of the capillary level input function for dynamic contrast-enhanced MRI of the breast using a deep learning approach.

机构信息

Vilcek Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York, USA.

Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York, USA.

出版信息

Magn Reson Med. 2022 May;87(5):2536-2550. doi: 10.1002/mrm.29148. Epub 2022 Jan 9.

Abstract

PURPOSE

To develop a deep learning approach to estimate the local capillary-level input function (CIF) for pharmacokinetic model analysis of DCE-MRI.

METHODS

A deep convolutional network was trained with numerically simulated data to estimate the CIF. The trained network was tested using simulated lesion data and used to estimate voxel-wise CIF for pharmacokinetic model analysis of breast DCE-MRI data using an abbreviated protocol from women with malignant (n = 25) and benign (n = 28) lesions. The estimated parameters were used to build a logistic regression model to detect the malignancy.

RESULT

The pharmacokinetic parameters estimated using the network-predicted CIF from our breast DCE data showed significant differences between the malignant and benign groups for all parameters. Testing the diagnostic performance with the estimated parameters, the conventional approach with arterial input function (AIF) showed an area under the curve (AUC) between 0.76 and 0.87, and the proposed approach with CIF demonstrated similar performance with an AUC between 0.79 and 0.81.

CONCLUSION

This study shows the feasibility of estimating voxel-wise CIF using a deep neural network. The proposed approach could eliminate the need to measure AIF manually without compromising the diagnostic performance to detect the malignancy in the clinical setting.

摘要

目的

开发一种深度学习方法来估计 DCE-MRI 药代动力学分析的局部毛细血管水平输入函数 (CIF)。

方法

使用数值模拟数据训练深度卷积网络来估计 CIF。使用模拟病变数据对训练好的网络进行测试,并用于估计使用简化协议从患有恶性(n=25)和良性(n=28)病变的女性的乳腺 DCE-MRI 数据进行药代动力学模型分析的体素级 CIF。使用所估计的参数构建逻辑回归模型以检测恶性肿瘤。

结果

使用网络预测的 CIF 从我们的乳腺 DCE 数据估计的药代动力学参数在恶性和良性组之间显示出所有参数的显著差异。使用估计的参数测试诊断性能,使用动脉输入函数 (AIF) 的常规方法的曲线下面积 (AUC) 在 0.76 到 0.87 之间,而使用 CIF 的建议方法的 AUC 在 0.79 到 0.81 之间表现出类似的性能。

结论

本研究表明使用深度神经网络估计体素级 CIF 的可行性。该方法可以消除手动测量 AIF 的需要,而不会影响在临床环境中检测恶性肿瘤的诊断性能。

相似文献

2
3
Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration?
Magn Reson Imaging. 2018 Oct;52:16-23. doi: 10.1016/j.mri.2018.05.007. Epub 2018 May 16.
5
Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements.
Neuroimage. 2024 May 1;291:120571. doi: 10.1016/j.neuroimage.2024.120571. Epub 2024 Mar 20.
7
Pharmacokinetic analysis of prostate cancer using independent component analysis.
Magn Reson Imaging. 2015 Dec;33(10):1236-1245. doi: 10.1016/j.mri.2015.08.009. Epub 2015 Aug 20.
8
9
A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer.
Phys Med Biol. 2011 Sep 7;56(17):5753-69. doi: 10.1088/0031-9155/56/17/018. Epub 2011 Aug 12.

引用本文的文献

1
DCE-MRI of the liver with sub-second temporal resolution using GRASP-Pro with navi-stack-of-stars sampling.
NMR Biomed. 2024 Dec;37(12):e5262. doi: 10.1002/nbm.5262. Epub 2024 Sep 25.
2
Feasibility of measuring blood-brain barrier permeability using ultra-short echo time radial magnetic resonance imaging.
J Neuroimaging. 2024 May-Jun;34(3):320-328. doi: 10.1111/jon.13199. Epub 2024 Apr 14.
3

本文引用的文献

1
Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI.
Front Neuroinform. 2020 Nov 20;14:610967. doi: 10.3389/fninf.2020.610967. eCollection 2020.
2
Quantitative perfusion-CMR is significantly influenced by the placement of the arterial input function.
Int J Cardiovasc Imaging. 2021 Mar;37(3):1023-1031. doi: 10.1007/s10554-020-02049-3. Epub 2020 Oct 12.
5
GRASP-Pro: imProving GRASP DCE-MRI through self-calibrating subspace-modeling and contrast phase automation.
Magn Reson Med. 2020 Jan;83(1):94-108. doi: 10.1002/mrm.27903. Epub 2019 Aug 10.
6
An Automatic Estimation of Arterial Input Function Based on Multi-Stream 3D CNN.
Front Neuroinform. 2019 Jul 5;13:49. doi: 10.3389/fninf.2019.00049. eCollection 2019.
8
Diagnostic performance of initial enhancement analysis using ultra-fast dynamic contrast-enhanced MRI for breast lesions.
Eur Radiol. 2019 Mar;29(3):1164-1174. doi: 10.1007/s00330-018-5643-4. Epub 2018 Aug 7.
9
Influence of arterial input function (AIF) on quantitative prostate dynamic contrast-enhanced (DCE) MRI and zonal prostate anatomy.
Magn Reson Imaging. 2018 Nov;53:28-33. doi: 10.1016/j.mri.2018.06.004. Epub 2018 Jun 15.
10
Validation of the Dominant Sequence Paradigm and Role of Dynamic Contrast-enhanced Imaging in PI-RADS Version 2.
Radiology. 2017 Dec;285(3):859-869. doi: 10.1148/radiol.2017161316. Epub 2017 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验