Suppr超能文献

无动脉输入函数测量的动态对比增强 MRI 中基于非配对深度学习的药代动力学参数估算。

Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea.

Department of Neurology, Konkuk University Medical Center, 120-1, Neungdong-ro, Gwangjin-gu, 05030, Seoul, Republic of Korea.

出版信息

Neuroimage. 2024 May 1;291:120571. doi: 10.1016/j.neuroimage.2024.120571. Epub 2024 Mar 20.

Abstract

DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics-driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.

摘要

DCE-MRI 通过获取药代动力学参数提供有关血管通透性和组织灌注的信息。然而,传统的估计这些药代动力学参数的方法涉及拟合示踪剂动力学模型,由于动脉输入函数 (AIF) 测量的噪声,这些模型通常存在计算复杂性和低准确性的问题。尽管已经提出了一些深度学习方法来解决这些挑战,但大多数现有方法依赖于需要配对的输入 DCE-MRI 和标记药代动力学参数图的监督学习。这种对标记数据的依赖会引入显著的时间和资源限制以及标记中的潜在噪声,使得监督学习方法往往不切实际。为了解决这些限制,我们提出了一种新颖的无配对深度学习方法,使用基于物理的 CycleGAN 方法来估计药代动力学参数和 AIF。我们提出的 CycleGAN 框架是基于基础物理模型设计的,具有更简单的架构,只有单个生成器和鉴别器对。至关重要的是,我们的实验结果表明,我们的方法不需要单独的 AIF 测量,并且比其他技术产生更可靠的药代动力学参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验