Suppr超能文献

基于声诺维增强超声(SCEUS)库普弗细胞期影像组学特征的肝细胞癌微血管侵犯(MVI)术前预测:一项前瞻性研究。

Preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma based on kupffer phase radiomics features of sonazoid contrast-enhanced ultrasound (SCEUS): A prospective study.

作者信息

Dong Yi, Zuo Dan, Qiu Yi-Jie, Cao Jia-Ying, Wang Han-Zhang, Yu Ling-Yun, Wang Wen-Ping

机构信息

Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.

Precision Health Institute, GE Healthcare China, Shanghai, China.

出版信息

Clin Hemorheol Microcirc. 2022;81(1):97-107. doi: 10.3233/CH-211363.

Abstract

OBJECTIVES

To establish and to evaluate a machine learning radiomics model based on grayscale and Sonazoid contrast enhanced ultrasound images for the preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients.

METHODS

100 cases of histopathological confirmed HCC lesions were prospectively included. Regions of interest were segmented on both grayscale and Kupffer phase of Sonazoid contrast enhanced (CEUS) images. Radiomic features were extracted from tumor region and region containing 5 mm of peritumoral liver tissues. Maximum relevance minimum redundancy (MRMR) and Least Absolute Shrinkage and Selection Operator (LASSO) were used for feature selection and Support Vector Machine (SVM) classifier was trained for radiomic signature calculation. Radiomic signatures were incorporated with clinical variables using univariate-multivariate logistic regression for the final prediction of MVI. Receiver operating characteristic curves, calibration curves and decision curve analysis were used to evaluate model's predictive performance of MVI.

RESULTS

Age were the only clinical variable significantly associated with MVI. Radiomic signature derived from Kupffer phase images of peritumoral liver tissues (kupfferPT) displayed a significantly better performance with an area under the receiver operating characteristic curve (AUROC) of 0.800 (95% confidence interval: 0.667, 0.834), the final prediction model using age and kupfferPT achieved an AUROC of 0.804 (95% CI: 0.723, 0.878), accuracy of 75.0%, sensitivity of 87.5% and specificity of 69.1%.

CONCLUSIONS

Radiomic model based on Kupffer phase ultrasound images of tissue adjacent to HCC lesions showed an observable better predictive value compared to grayscale images and has potential value to facilitate preoperative identification of HCC patients at higher risk of MVI.

摘要

目的

建立并评估基于灰度及声诺维增强超声图像的机器学习放射组学模型,用于术前预测肝细胞癌(HCC)患者的微血管侵犯(MVI)。

方法

前瞻性纳入100例经组织病理学确诊的HCC病变。在灰度图像及声诺维增强超声(CEUS)图像的 Kupffer 期上分割感兴趣区域。从肿瘤区域及包含肿瘤周围5毫米肝组织的区域提取放射组学特征。采用最大相关最小冗余法(MRMR)和最小绝对收缩和选择算子法(LASSO)进行特征选择,并训练支持向量机(SVM)分类器计算放射组学特征。将放射组学特征与临床变量结合,采用单变量-多变量逻辑回归进行MVI的最终预测。采用受试者工作特征曲线、校准曲线和决策曲线分析评估模型对MVI的预测性能。

结果

年龄是唯一与MVI显著相关的临床变量。从肿瘤周围肝组织的Kupffer期图像得出的放射组学特征(kupfferPT)表现出明显更好的性能,受试者工作特征曲线下面积(AUROC)为0.800(95%置信区间:0.667,0.834),使用年龄和kupfferPT的最终预测模型AUROC为0.804(95%CI:0.723,0.878),准确率为75.0%,灵敏度为87.5%,特异性为69.1%。

结论

基于HCC病变邻近组织的Kupffer期超声图像的放射组学模型与灰度图像相比显示出明显更好的预测价值,对术前识别具有较高MVI风险的HCC患者具有潜在价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验