Suppr超能文献

成像序列、特征提取、特征选择和分类器对基于放射组学的磁共振成像预测肝细胞癌微血管侵犯的显著影响。

Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.

作者信息

Dai Houjiao, Lu Minhua, Huang Bingsheng, Tang Mimi, Pang Tiantian, Liao Bing, Cai Huasong, Huang Mengqi, Zhou Yongjin, Chen Xin, Ding Huijun, Feng Shi-Ting

机构信息

Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.

Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China.

出版信息

Quant Imaging Med Surg. 2021 May;11(5):1836-1853. doi: 10.21037/qims-20-218.

Abstract

BACKGROUND

Microvascular invasion (MVI) has a significant effect on the prognosis of hepatocellular carcinoma (HCC), but its preoperative identification is challenging. Radiomics features extracted from medical images, such as magnetic resonance (MR) images, can be used to predict MVI. In this study, we explored the effects of different imaging sequences, feature extraction and selection methods, and classifiers on the performance of HCC MVI predictive models.

METHODS

After screening against the inclusion criteria, 69 patients with HCC and preoperative gadoxetic acid-enhanced MR images were enrolled. In total, 167 features were extracted from the MR images of each sequence for each patient. Experiments were designed to investigate the effects of imaging sequence, number of gray levels (), quantization algorithm, feature selection method, and classifiers on the performance of radiomics biomarkers in the prediction of HCC MVI. We trained and tested these models using leave-one-out cross-validation (LOOCV).

RESULTS

The radiomics model based on the images of the hepatobiliary phase (HBP) had better predictive performance than those based on the arterial phase (AP), portal venous phase (PVP), and pre-enhanced T1-weighted images [area under the receiver operating characteristic (ROC) curve (AUC) =0.792 0.641/0.634/0.620, P=0.041/0.021/0.010, respectively]. Compared with the equal-probability and Lloyd-Max algorithms, the radiomics features obtained using the Uniform quantization algorithm had a better performance (AUC =0.643/0.666 0.792, P=0.002/0.003, respectively). Among the values of 8, 16, 32, 64, and 128, the best predictive performance was achieved when the was 64 (AUC =0.792 0.584/0.697/0.677/0.734, P<0.001/P=0.039/0.001/0.137, respectively). We used a two-stage feature selection method which combined the least absolute shrinkage and selection operator (LASSO) and recursive feature elimination (RFE) gradient boosting decision tree (GBDT), which achieved better stability than and outperformed LASSO, minimum redundancy maximum relevance (mRMR), and support vector machine (SVM)-RFE (stability =0.967 0.837/0.623/0.390, respectively; AUC =0.850 0.792/0.713/0.699, P=0.142/0.007/0.003, respectively). The model based on the radiomics features of HBP images using the GBDT classifier showed a better performance for the preoperative prediction of MVI compared with logistic regression (LR), SVM, and random forest (RF) classifiers (AUC =0.895 0.850/0.834/0.884, P=0.558/0.229/0.058, respectively). With the optimal combination of these factors, we established the best model, which had an AUC of 0.895, accuracy of 87.0%, specificity of 82.5%, and sensitivity of 93.1%.

CONCLUSIONS

Imaging sequences, feature extraction and selection methods, and classifiers can have a considerable effect on the predictive performance of radiomics models for HCC MVI.

摘要

背景

微血管侵犯(MVI)对肝细胞癌(HCC)的预后有显著影响,但其术前识别具有挑战性。从医学图像(如磁共振(MR)图像)中提取的放射组学特征可用于预测MVI。在本研究中,我们探讨了不同成像序列、特征提取和选择方法以及分类器对HCC MVI预测模型性能的影响。

方法

根据纳入标准进行筛选后,纳入69例HCC患者及术前钆塞酸增强MR图像。为每位患者从每个序列的MR图像中总共提取167个特征。设计实验以研究成像序列、灰度级数()、量化算法、特征选择方法和分类器对放射组学生物标志物预测HCC MVI性能的影响。我们使用留一法交叉验证(LOOCV)对这些模型进行训练和测试。

结果

基于肝胆期(HBP)图像的放射组学模型比基于动脉期(AP)、门静脉期(PVP)和增强前T1加权图像的模型具有更好的预测性能[受试者操作特征(ROC)曲线下面积(AUC)=0.792 0.641/0.634/0.620,P分别=0.041/0.021/0.010]。与等概率算法和Lloyd-Max算法相比,使用均匀量化算法获得的放射组学特征具有更好的性能(AUC =0.643/0.666 0.792,P分别=0.002/0.003)。在8、16、32、64和128这些值中,当为64时实现了最佳预测性能(AUC =0.792 0.584/0.697/0.677/0.734,P<0.001/P=0.039/0.001/0.137,分别)。我们使用了一种两阶段特征选择方法,该方法结合了最小绝对收缩和选择算子(LASSO)以及递归特征消除(RFE)梯度提升决策树(GBDT),其稳定性优于LASSO、最小冗余最大相关性(mRMR)和支持向量机(SVM)-RFE,且表现更优(稳定性分别=0.967 0.837/0.623/0.390;AUC =0.850 0.792/0.713/0.699,P分别=0.142/0.007/0.003)。与逻辑回归(LR)、SVM和随机森林(RF)分类器相比,基于HBP图像放射组学特征使用GBDT分类器的模型在术前预测MVI方面表现更好(AUC =0.895 0.850/0.834/0.884,P分别=0.558/0.229/0.058)。通过这些因素的最佳组合,我们建立了最佳模型,其AUC为0.895,准确率为87.0%,特异性为82.5%,敏感性为93.1%。

结论

成像序列、特征提取和选择方法以及分类器对HCC MVI放射组学模型的预测性能可能有相当大的影响。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验