Kaushik Anupama, Kaur Prabhjot, Choudhary Nisha
Maharaja Surajmal Institute of Technology, GGSIP University, New Delhi, India.
Soft comput. 2022;26(3):1197-1216. doi: 10.1007/s00500-021-06564-w. Epub 2022 Jan 3.
Analogy-based estimation (ABE) estimates the effort of the current project based on the information of similar past projects. The solution function of ABE provides the final effort prediction of a new project. Many studies on ABE in the past have provided various solution functions, but its effectiveness can still be enhanced. The present study is an attempt to improve the effort prediction accuracy of ABE by proposing a solution function SABE: Stacking regularization in analogy-based software effort estimation. The core of SABE is stacking, which is a machine learning technique. Stacking is beneficial as it works on multiple models harnessing their capabilities and provides a better estimation accuracy as compared to a single model. The proposed method is validated on four software effort estimation datasets and compared with the already existing solution functions: closet analogy, mean, median and inverse distance weighted mean. The evaluation criteria used are mean magnitude of relative error (MMRE), median magnitude of relative error (MdMRE), prediction (PRED) and standard accuracy (SA). The results suggested that the SABE showed promising performance for almost all the evaluation criteria when compared with the results of the earlier studies.
基于类比的估算(ABE)基于过往类似项目的信息来估算当前项目的工作量。ABE的求解函数提供新项目的最终工作量预测。过去许多关于ABE的研究提供了各种求解函数,但其有效性仍可提高。本研究试图通过提出一种求解函数SABE:基于类比的软件工作量估算中的堆叠正则化,来提高ABE的工作量预测准确性。SABE的核心是堆叠,这是一种机器学习技术。堆叠是有益的,因为它作用于多个模型,利用它们的能力,并且与单个模型相比能提供更好的估算准确性。所提出的方法在四个软件工作量估算数据集上进行了验证,并与现有的求解函数进行了比较:最近邻类比、均值、中位数和反距离加权均值。使用的评估标准是相对误差的平均幅度(MMRE)、相对误差的中位数幅度(MdMRE)、预测(PRED)和标准准确性(SA)。结果表明,与早期研究的结果相比,SABE在几乎所有评估标准上都表现出了良好的性能。