Suppr超能文献

离散高斯期望最大化(梯度)算法用于差分隐私。

The Discrete Gaussian Expectation Maximization (Gradient) Algorithm for Differential Privacy.

机构信息

School of Mathematics and Statistics, Baicheng Normal University, Baicheng, China.

出版信息

Comput Intell Neurosci. 2021 Dec 30;2021:7962489. doi: 10.1155/2021/7962489. eCollection 2021.

Abstract

In this paper, we give a modified gradient EM algorithm; it can protect the privacy of sensitive data by adding discrete Gaussian mechanism noise. Specifically, it makes the high-dimensional data easier to process mainly by scaling, truncating, noise multiplication, and smoothing steps on the data. Since the variance of discrete Gaussian is smaller than that of the continuous Gaussian, the difference privacy of data can be guaranteed more effectively by adding the noise of the discrete Gaussian mechanism. Finally, the standard gradient EM algorithm, clipped algorithm, and our algorithm (DG-EM) are compared with the GMM model. The experiments show that our algorithm can effectively protect high-dimensional sensitive data.

摘要

在本文中,我们给出了一种改进的梯度 EM 算法;通过添加离散高斯机制噪声,可以保护敏感数据的隐私。具体来说,它主要通过对数据进行缩放、截断、噪声乘法和平滑步骤,使高维数据更易于处理。由于离散高斯的方差小于连续高斯的方差,因此通过添加离散高斯机制的噪声,可以更有效地保证数据的差分隐私。最后,将标准梯度 EM 算法、裁剪算法和我们的算法(DG-EM)与 GMM 模型进行了比较。实验表明,我们的算法可以有效地保护高维敏感数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400d/8739528/d005916e9827/CIN2021-7962489.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验