Suppr超能文献

心房颤动相关基因与通路的综合分析。

Comprehensive Analysis of Pertinent Genes and Pathways in Atrial Fibrillation.

机构信息

Department of Cardiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500 Jiangsu Province, China.

出版信息

Comput Math Methods Med. 2021 Dec 31;2021:4530180. doi: 10.1155/2021/4530180. eCollection 2021.

Abstract

PURPOSE

Atrial fibrillation (AF) is the most frequent arrhythmia in clinical practice. The pathogenesis of AF is not yet clear. Therefore, exploring the molecular information of AF displays much importance for AF therapy.

METHODS

The GSE2240 data were acquired from the Gene Expression Omnibus (GEO) database. The R limma software package was used to screen DEGs. Based on the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) databases, we conducted the functions and pathway enrichment analyses. Then, the STRING and Cytoscape software were employed to build Protein-Protein Interaction (PPI) network and screen for hub genes. Finally, we used the Cell Counting Kit-8 (CCK-8) experiment to explore the effect of hub gene knockdown on the proliferation of AF cells.

RESULT

906 differentially expressed genes (DEGs), including 542 significantly upregulated genes and 364 significantly downregulated genes, were screened in AF. The genes of AF were mainly enriched in vascular endothelial growth factor-activated receptor activity, alanine, regulation of histone deacetylase activity, and HCM. The PPI network constructed of significantly upregulated DEGs contained 404 nodes and 514 edges. Five hub genes, ASPM, DTL, STAT3, ANLN, and CDCA5, were identified through the PPI network. The PPI network constructed by significantly downregulated genes contained 327 nodes and 301 edges. Four hub genes, CDC42, CREB1, AR, and SP1, were identified through this PPI network. The results of CCK-8 experiments proved that knocking down the expression of CDCA5 gene could inhibit the proliferation of H9C2 cells.

CONCLUSION

Bioinformatics analyses revealed the hub genes and key pathways of AF. These genes and pathways provide information for studying the pathogenesis, treatment, and prognosis of AF and have the potential to become biomarkers in AF treatment.

摘要

目的

心房颤动(AF)是临床实践中最常见的心律失常。AF 的发病机制尚不清楚。因此,探索 AF 的分子信息对 AF 的治疗具有重要意义。

方法

从基因表达综合数据库(GEO)中获取 GSE2240 数据。使用 R limma 软件包筛选差异表达基因(DEGs)。基于基因本体论(GO)、京都基因与基因组百科全书(KEGG)和基因集富集分析(GSEA)数据库,我们进行了功能和通路富集分析。然后,使用 STRING 和 Cytoscape 软件构建蛋白质-蛋白质相互作用(PPI)网络,并筛选出枢纽基因。最后,我们使用细胞计数试剂盒-8(CCK-8)实验来探讨枢纽基因敲低对 AF 细胞增殖的影响。

结果

筛选出 906 个差异表达基因(DEGs),包括 542 个显著上调基因和 364 个显著下调基因。AF 中的基因主要富集于血管内皮生长因子激活受体活性、丙氨酸、组蛋白去乙酰化酶活性调节和肥厚型心肌病。显著上调 DEGs 构建的 PPI 网络包含 404 个节点和 514 条边。通过 PPI 网络鉴定了五个枢纽基因,即 ASPM、DTL、STAT3、ANLN 和 CDCA5。显著下调基因构建的 PPI 网络包含 327 个节点和 301 条边。通过该 PPI 网络鉴定了四个枢纽基因,即 CDC42、CREB1、AR 和 SP1。CCK-8 实验结果证明,敲低 CDCA5 基因的表达可以抑制 H9C2 细胞的增殖。

结论

生物信息学分析揭示了 AF 的枢纽基因和关键通路。这些基因和通路为研究 AF 的发病机制、治疗和预后提供了信息,并有潜力成为 AF 治疗的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f6e/8741379/ee636d23954d/CMMM2021-4530180.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验