Landero Figueroa Marcela Montserrat, Parsons Miles J G, Saunders Benjamin J, Radford Ben, Salgado-Kent Chandra, Parnum Iain M
Centre for Marine Science and Technology (CMST) Curtin University Perth WA Australia.
Australian Institute of Marine Science Nedlands WA Australia.
Ecol Evol. 2021 Dec 9;11(24):17873-17884. doi: 10.1002/ece3.8351. eCollection 2021 Dec.
Seafloor characteristics can help in the prediction of fish distribution, which is required for fisheries and conservation management. Despite this, only 5%-10% of the world's seafloor has been mapped at high resolution, as it is a time-consuming and expensive process. Multibeam echo-sounders (MBES) can produce high-resolution bathymetry and a broad swath coverage of the seafloor, but require greater financial and technical resources for operation and data analysis than singlebeam echo-sounders (SBES). In contrast, SBES provide comparatively limited spatial coverage, as only a single measurement is made from directly under the vessel. Thus, producing a continuous map requires interpolation to fill gaps between transects. This study assesses the performance of demersal fish species distribution models by comparing those derived from interpolated SBES data with full-coverage MBES distribution models. A Random Forest classifier was used to model the distribution of , , , , , and , with depth and depth derivatives (slope, aspect, standard deviation of depth, terrain ruggedness index, mean curvature, and topographic position index) as explanatory variables. The results indicated that distribution models for , , , and performed poorly for MBES and SBES data with area under the receiver operator curves (AUC) below 0.7. Consequently, the distribution of these species could not be predicted by seafloor characteristics produced from either echo-sounder type. Distribution models for and performed well for MBES and the SBES data with an AUC above 0.8. Depth was the most important variable explaining the distribution of and in both MBES and SBES models. While further research is needed, this study shows that in resource-limited scenarios, SBES can produce comparable results to MBES for use in demersal fish management and conservation.
海底特征有助于预测鱼类分布,这是渔业和保护管理所必需的。尽管如此,世界上只有5%-10%的海底已被高分辨率测绘,因为这是一个耗时且昂贵的过程。多波束回声测深仪(MBES)可以生成高分辨率测深图和对海底的广泛覆盖,但与单波束回声测深仪(SBES)相比,其操作和数据分析需要更多的资金和技术资源。相比之下,SBES提供的空间覆盖相对有限,因为仅从船正下方进行单次测量。因此,制作连续地图需要进行插值以填补断面之间的空白。本研究通过比较从插值SBES数据得出的底栖鱼类物种分布模型与全覆盖MBES分布模型,评估了底栖鱼类物种分布模型的性能。使用随机森林分类器对 、 、 、 、 和 的分布进行建模,将深度和深度导数(坡度、坡向、深度标准差、地形崎岖度指数、平均曲率和地形位置指数)作为解释变量。结果表明,对于MBES和SBES数据, 、 、 和 的分布模型表现不佳,接收者操作特征曲线(AUC)下面积低于0.7。因此,这两种回声测深仪类型产生的海底特征无法预测这些物种的分布。 和 的分布模型对于MBES和SBES数据表现良好,AUC高于0.8。在MBES和SBES模型中,深度都是解释 和 分布的最重要变量。虽然还需要进一步研究,但本研究表明,在资源有限的情况下,SBES在底栖鱼类管理和保护中可以产生与MBES相当的结果。