Peterson Katie, Ruffley Megan, Parent Christine E
Department of Biological Sciences University of Idaho Moscow Idaho USA.
Department of Plant Biology Carnegie Institution for Science Stanford California USA.
Ecol Evol. 2021 Dec 1;11(24):18066-18080. doi: 10.1002/ece3.8404. eCollection 2021 Dec.
We sought to assess effects of fragmentation and quantify the contribution of ecological processes to community assembly by measuring species richness, phylogenetic, and phenotypic diversity of species found in local and regional plant communities. Specifically, our fragmented system is Craters of the Moon National Monument and Preserve, Idaho, USA. CRMO is characterized by vegetated islands, kipukas, that are isolated in a matrix of lava. We used floristic surveys of vascular plants in 19 kipukas to create a local species list to compare traditional dispersion metrics, mean pairwise distance, and mean nearest taxon distance (MPD and MNTD), to a regional species list with phenotypic and phylogenetic data. We combined phylogenetic and functional trait data in a novel machine-learning model selection approach, Community Assembly Model Inference (CAMI), to infer probability associated with different models of community assembly given the data. Finally, we used linear regression to explore whether the geography of kipukas explained estimated support for community assembly models. Using traditional metrics of MPD and MNTD neutral processes received the most support when comparing kipuka species to regional species. Individually no kipukas showed significant support for overdispersion. Rather, five kipukas showed significant support for phylogenetic clustering using MPD and two kipukas using MNTD. Using CAMI, we inferred neutral and filtering models structured the kipuka plant community for our trait of interest. Finally, we found as species richness in kipukas increases, model support for competition decreases and lower elevation kipukas show more support for habitat filtering models. While traditional phylogenetic community approaches suggest neutral assembly dynamics, recently developed approaches utilizing machine learning and model choice revealed joint influences of assembly processes to form the kipuka plant communities. Understanding ecological processes at play in naturally fragmented systems will aid in guiding our understanding of how fragmentation impacts future changes in landscapes.
我们试图通过测量本地和区域植物群落中物种的丰富度、系统发育和表型多样性,来评估破碎化的影响并量化生态过程对群落组装的贡献。具体而言,我们的破碎化系统是美国爱达荷州的月坑国家纪念区和保护区(Craters of the Moon National Monument and Preserve)。月坑国家纪念区的特点是有植被覆盖的岛屿,即基普卡(kipukas),它们孤立在熔岩基质中。我们对19个基普卡中的维管植物进行了植物区系调查,以创建一个本地物种列表,将传统的扩散指标、平均成对距离和平均最近分类单元距离(MPD和MNTD)与一个包含表型和系统发育数据的区域物种列表进行比较。我们将系统发育和功能性状数据结合在一种新颖的机器学习模型选择方法——群落组装模型推断(CAMI)中,以根据数据推断与不同群落组装模型相关的概率。最后,我们使用线性回归来探讨基普卡的地理位置是否能解释对群落组装模型的估计支持度。使用MPD和MNTD的传统指标,在将基普卡物种与区域物种进行比较时,中性过程得到的支持最多。单独来看,没有基普卡显示出对过度分散有显著支持。相反,有5个基普卡使用MPD对系统发育聚类有显著支持,2个基普卡使用MNTD对系统发育聚类有显著支持。使用CAMI,我们推断中性和过滤模型构建了我们感兴趣性状的基普卡植物群落。最后,我们发现随着基普卡中物种丰富度的增加,对竞争模型的支持度降低,而海拔较低的基普卡对生境过滤模型的支持度更高。虽然传统的系统发育群落方法表明是中性组装动态,但最近开发的利用机器学习和模型选择的方法揭示了组装过程的共同影响,从而形成了基普卡植物群落。了解自然破碎化系统中起作用的生态过程将有助于指导我们理解破碎化如何影响景观的未来变化。