Gould Nicole R, Leser Jenna M, Torre Olivia M, Khairallah Ramzi J, Ward Christopher W, Stains Joseph P
Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, USA.
Myologica, LLC., New Market, MD, USA.
Bio Protoc. 2021 Dec 5;11(23):e4251. doi: 10.21769/BioProtoc.4251.
Bone is a dynamic tissue that adapts to changes in its mechanical environment. Mechanical stimuli pressurize interstitial fluid in the lacunar-canalicular system within the bone matrix, causing fluid shear stress (FSS) across bone embedded, mechano-sensitive osteocytes. Therefore, modeling this mechanical stimulus is vital for identifying mechano-transduction cascades that contribute to the regulation of mechano-responsive proteins, such as the Wnt/β-catenin antagonist, sclerostin, which is reduced in response to FSS. Recently, we reported the rapid post-translational degradation of sclerostin protein in bone cells following FSS. Given the fundamental nature of sclerostin to bone physiology and the nuances of studying its rapid post-translational control, here, we detail our FSS protocol, and adaptations that can be made, to stimulate Ocy454 osteocyte-like cells to study sclerostin protein . While this protocol is optimized for detecting sclerostin degradation by western blot, this protocol can be adapted to examine transcriptional changes with RT-qPCR, cellular dynamics with live cell imaging, or secreted factors in the FSS buffer. This protocol utilizes 3D-printed FSS tips that are compatible with commercially available 96-well plates, allowing for high experimental accessibility, versatility, and throughput. However, this protocol can be adapted for any FSS chamber. It can also be combined with pharmacological inhibitors or genetic manipulations to interrogate the role of specific cellular components. In all, this experimental set-up and protocol is highly adaptable to allow for many experimental outcomes to examine many aspects of cell mechano-transduction.
骨骼是一种动态组织,能够适应其力学环境的变化。机械刺激会对骨基质内的腔隙-小管系统中的组织液施加压力,从而在包埋于骨内的、对机械敏感的骨细胞上产生流体剪切应力(FSS)。因此,对这种机械刺激进行建模对于识别机械转导级联反应至关重要,这些级联反应有助于调节机械反应性蛋白,如Wnt/β-连环蛋白拮抗剂硬化蛋白,其会因FSS而减少。最近,我们报道了FSS作用后骨细胞中硬化蛋白的快速翻译后降解。鉴于硬化蛋白对骨生理学的重要性以及研究其快速翻译后调控的细微差别,在此,我们详细介绍我们的FSS实验方案,以及为刺激Ocy454骨细胞样细胞以研究硬化蛋白而可进行的调整。虽然该方案是为通过蛋白质印迹法检测硬化蛋白降解而优化的,但该方案可适用于通过RT-qPCR检测转录变化、通过活细胞成像检测细胞动力学或检测FSS缓冲液中的分泌因子。该方案使用与市售96孔板兼容的3D打印FSS尖端,具有高实验可及性、通用性和通量。然而,该方案可适用于任何FSS室。它还可以与药理学抑制剂或基因操作相结合,以探究特定细胞成分的作用。总之,这种实验设置和方案具有高度适应性,可实现多种实验结果,以研究细胞机械转导的多个方面。