Fan David D, Agha-Mohammadi Ali-Akbar, Theodorou Evangelos A
David D. Fan and Evangelos A. Theodorou are with the Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
David D. Fan and Ali-akbar Agha-mohammadi are with NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
IEEE Robot Autom Lett. 2022 Jan;7(1):279-286. doi: 10.1109/lra.2021.3125047. Epub 2021 Nov 13.
One of the main challenges in autonomous robotic exploration and navigation in unknown and unstructured environments is determining where the robot can or cannot safely move. A significant source of difficulty in this determination arises from stochasticity and uncertainty, coming from localization error, sensor sparsity and noise, difficult-to-model robot-ground interactions, and disturbances to the motion of the vehicle. Classical approaches to this problem rely on geometric analysis of the surrounding terrain, which can be prone to modeling errors and can be computationally expensive. Moreover, modeling the distribution of uncertain traversability costs is a difficult task, compounded by the various error sources mentioned above. In this work, we take a principled learning approach to this problem. We introduce a neural network architecture for robustly learning the distribution of traversability costs. Because we are motivated by preserving the life of the robot, we tackle this learning problem from the perspective of learning tail-risks, i.e. the conditional value-at-risk (CVaR). We show that this approach reliably learns the expected tail risk given a desired probability risk threshold between 0 and 1, producing a traversability costmap which is more robust to outliers, more accurately captures tail risks, and is more computationally efficient, when compared against baselines. We validate our method on data collected by a legged robot navigating challenging, unstructured environments including an abandoned subway, limestone caves, and lava tube caves.
在未知且无结构的环境中进行自主机器人探索与导航的主要挑战之一,是确定机器人能够或无法安全移动的位置。在这一确定过程中,一个重大的困难来源是随机性和不确定性,其源于定位误差、传感器稀疏性和噪声、难以建模的机器人与地面的相互作用以及车辆运动受到的干扰。解决这个问题的经典方法依赖于对周围地形的几何分析,这种方法容易出现建模误差,并且计算成本高昂。此外,对不确定的可通行性成本分布进行建模是一项艰巨的任务,上述各种误差源使这一任务更加复杂。在这项工作中,我们采用一种有原则的学习方法来解决这个问题。我们引入了一种神经网络架构,用于稳健地学习可通行性成本的分布。由于我们的动机是保护机器人的寿命,我们从学习尾部风险的角度来处理这个学习问题,即条件风险价值(CVaR)。我们表明,给定0到1之间的期望概率风险阈值,这种方法能够可靠地学习期望尾部风险,生成一个对异常值更稳健、更准确地捕捉尾部风险且计算效率更高的可通行性成本地图,与基线方法相比。我们在由腿部机器人收集的数据上验证了我们的方法,这些数据来自具有挑战性的无结构环境,包括废弃的地铁、石灰岩洞穴和熔岩管洞穴。