Prágr Miloš, Bayer Jan, Faigl Jan
Computational Robotics Laboratory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia.
Front Robot AI. 2022 Oct 5;9:910113. doi: 10.3389/frobt.2022.910113. eCollection 2022.
In this study, we address generalized autonomous mobile robot exploration of unknown environments where a robotic agent learns a traversability model and builds a spatial model of the environment. The agent can benefit from the model learned online in distinguishing what terrains are easy to traverse and which should be avoided. The proposed solution enables the learning of multiple traversability models, each associated with a particular locomotion gait, a walking pattern of a multi-legged walking robot. We propose to address the simultaneous learning of the environment and traversability models by a decoupled approach. Thus, navigation waypoints are generated using the current spatial and traversability models to gain the information necessary to improve the particular model during the robot's motion in the environment. From the set of possible waypoints, the decision on where to navigate next is made based on the solution of the generalized traveling salesman problem that allows taking into account a planning horizon longer than a single myopic decision. The proposed approach has been verified in simulated scenarios and experimental deployments with a real hexapod walking robot with two locomotion gaits, suitable for different terrains. Based on the achieved results, the proposed method exploits the online learned traversability models and further supports the selection of the most appropriate locomotion gait for the particular terrain types.
在本研究中,我们探讨了广义自主移动机器人在未知环境中的探索问题,其中机器人代理学习可通行性模型并构建环境的空间模型。该代理可以从在线学习的模型中受益,以区分哪些地形易于通行,哪些应予以避开。所提出的解决方案能够学习多个可通行性模型,每个模型都与特定的运动步态相关联,即多足步行机器人的行走模式。我们建议通过一种解耦方法来解决环境模型和可通行性模型的同时学习问题。因此,利用当前的空间模型和可通行性模型生成导航路点,以便在机器人在环境中运动时获取改进特定模型所需的信息。从一组可能的路点中,基于广义旅行商问题的解决方案来决定下一步导航到何处,该问题允许考虑比单个近视决策更长的规划范围。所提出的方法已在模拟场景以及使用具有两种运动步态的真实六足步行机器人进行的实验部署中得到验证,这两种步态适用于不同的地形。基于所取得的结果,所提出的方法利用在线学习的可通行性模型,并进一步支持为特定地形类型选择最合适的运动步态。