Suppr超能文献

GtoPdb v.2021.3中的γ-氨基丁酸受体

GABA receptors in GtoPdb v.2021.3.

作者信息

Belelli Delia, Hales Tim G, Lambert Jeremy J, Luscher Bernhard, Olsen Richard, Peters John A, Rudolph Uwe, Sieghart Werner

机构信息

University of Dundee, UK.

Pennsylvania State University, USA.

出版信息

IUPHAR BPS Guide Pharm CITE. 2021 Sep 2;2021(3). doi: 10.2218/gtopdb/F72/2021.3.

Abstract

The GABA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT and strychnine-sensitive glycine receptors. GABA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABA, slow' [45]. GABA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABA receptors [359], [16, 235, 236]. Many GABA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABA receptors harbour a single type of α- and β - subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. [16, 235, 3, 2] class the GABA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABA receptors are classed as conclusively identified (., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].

摘要

GABA受体是半胱氨酸环家族的配体门控离子通道,该家族包括烟碱型乙酰胆碱、5-羟色胺和士的宁敏感的甘氨酸受体。中枢神经系统内GABA受体介导的抑制作用通过快速突触传递、持续的强直抑制以及被称为“GABA慢反应”的时间上处于中间状态的事件来实现[45]。GABA受体以4个跨膜亚基的五聚体形式存在,形成一个内在的阴离子选择性通道。在哺乳动物中已报道了6种α、3种β、3种γ、1种δ、3种ρ、1种ε、1种π和1种θ GABA受体亚基的序列[278, 235, 236, 283]。π亚基仅限于生殖组织。许多亚基存在可变剪接形式(如α4-和α6-(均无功能)、α5-、β2-、β3-和γ2-),同时α3亚基存在RNA编辑[71]。3种ρ亚基(ρ1-3)可作为同聚体或异聚体发挥作用[359, 50]。由ρ亚基形成的受体,因其独特的药理学特性,包括对荷包牡丹碱、苯二氮䓬类和巴比妥类药物不敏感,有时被称为GABAρ受体[359],[16, 235, 236]。许多GABA受体亚型包含α-、β-和γ-亚基,其可能的化学计量比为2α.2β.1γ[168, 235]。据认为,大多数GABA受体含有单一类型的α-和β-亚基变体。α1β2γ2异聚体是中枢神经系统中数量最多的GABA受体,其次是α2β3γ2和α3β3γ2亚型。包含α4-、α5-或α6-亚基,或β1-、γ1-、γ3-、δ-、ε-和θ-亚基的受体数量较少,但它们仍可能发挥重要功能。例如,小脑颗粒细胞中包含α6-和δ-亚基的突触外受体,或齿状回颗粒细胞和丘脑神经元中包含α4-和δ-亚基的突触外受体,介导一种对神经元兴奋性很重要的强直电流,该电流响应于环境中GABA的浓度[209, 272, 83, 19, 288]。GABA结合发生在β+/α-亚基界面,同源的γ+/α-亚基界面形成苯二氮䓬位点。最近有人推测苯二氮䓬结合的第二个位点位于α+/β-界面([254];[282]综述)。特定的α-和γ-亚基异构体对苯二氮䓬位点的识别和/或效能有显著影响。因此,包含α4-或α6-亚基的受体不被“经典”苯二氮䓬类药物如氟硝西泮所识别(但见[356])。近期的几篇综述[52, 140, 188, 316]详细讨论了GABA受体及其亚基的转运、细胞表面表达、内化和功能,但值得注意的一点是,包含γ2亚基的受体(与α5亚基结合时除外)聚集在突触后膜(但可能在突触和突触外位置之间动态分布),而包含δ亚基的受体似乎仅位于突触外。[16, 235, 3, 2]根据其亚基结构、药理学和受体功能对GABA受体进行分类。目前,1种天然GABA受体被明确鉴定(即α1β2γ2、α1βγ2、α3βγ2、α4βγ2、α4β2δ、α4β3δ、α5βγ2、α6βγ2、α6β2δ、α6β3δ和ρ),还有更多的受体亚型很可能存在,或只是初步确定[235, 236]。本指南不详细讨论各个GABA受体亚型的药理学;此类信息可在综述[16, 95, 168, 173, 143, 278, 216, 235, 236]以及[9, 10]中获取。表中列出了区分α-亚基异构体的药物,正文中指出了在受体亚型之间表现出选择性的其他药物,例如β-亚基选择性。表中总结了ρ受体独特的激动剂和拮抗剂药理学,[359, 50, 145, 223]中综述了其他方面。已经描述了几种高分辨率冷冻电子显微镜结构其中脂质纳米盘中的全长人α1β3γ2L GABA受体与通道阻滞剂印防己毒素、竞争性拮抗剂荷包牡丹碱、激动剂GABA(γ-氨基丁酸)以及经典苯二氮䓬类药物阿普唑仑和地西泮结合[198]。

相似文献

1
GABA receptors in GtoPdb v.2021.3.
IUPHAR BPS Guide Pharm CITE. 2021 Sep 2;2021(3). doi: 10.2218/gtopdb/F72/2021.3.
2
GABA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors.
Curr Pharm Des. 2018;24(17):1839-1844. doi: 10.2174/1381612824666180515123921.
4
GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain.
Neuroscience. 2000;101(4):815-50. doi: 10.1016/s0306-4522(00)00442-5.
5
Immunohistochemical distribution of 10 GABA receptor subunits in the forebrain of the rhesus monkey Macaca mulatta.
J Comp Neurol. 2020 Oct 15;528(15):2551-2568. doi: 10.1002/cne.24910. Epub 2020 Apr 3.
6
Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities.
J Physiol. 2007 Jun 15;581(Pt 3):1001-18. doi: 10.1113/jphysiol.2007.132886. Epub 2007 Mar 29.
8
The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells.
J Physiol. 2008 Feb 15;586(4):989-1004. doi: 10.1113/jphysiol.2007.146746. Epub 2007 Dec 13.
9
Stoichiometry of δ subunit containing GABA(A) receptors.
Br J Pharmacol. 2014 Feb;171(4):985-94. doi: 10.1111/bph.12514.
10
Selective inhibition of extra-synaptic α5-GABA receptors by S44819, a new therapeutic agent.
Neuropharmacology. 2017 Oct;125:353-364. doi: 10.1016/j.neuropharm.2017.08.012. Epub 2017 Aug 12.

引用本文的文献

1
Jiawei Suanzaoren decoction for the treatment of perimenopausal insomnia: clinical observation and experimental study.
Front Pharmacol. 2025 Jan 29;15:1495957. doi: 10.3389/fphar.2024.1495957. eCollection 2024.
3
From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis.
Brain. 2025 May 13;148(5):1479-1506. doi: 10.1093/brain/awae413.
5
6
Neuroprotective effect of Ziziphi Spinosae Semen on rats with p-chlorophenylalanine-induced insomnia activation of GABA receptor.
Front Pharmacol. 2022 Nov 22;13:965308. doi: 10.3389/fphar.2022.965308. eCollection 2022.
7
Functional Alternatives to Alcohol.
Nutrients. 2022 Sep 13;14(18):3761. doi: 10.3390/nu14183761.
8
The Case for Clinical Trials with Novel GABAergic Drugs in Diabetes Mellitus and Obesity.
Life (Basel). 2022 Feb 21;12(2):322. doi: 10.3390/life12020322.
9
Photopharmacology of Ion Channels through the Light of the Computational Microscope.
Int J Mol Sci. 2021 Nov 8;22(21):12072. doi: 10.3390/ijms222112072.

本文引用的文献

1
Why data citation isn't working, and what to do about it.
Database (Oxford). 2020 Jan 1;2020. doi: 10.1093/databa/baaa022.
2
Positive allosteric modulation of GABA receptors by a novel antiepileptic drug cenobamate.
Eur J Pharmacol. 2020 Jul 15;879:173117. doi: 10.1016/j.ejphar.2020.173117. Epub 2020 Apr 20.
3
GABA receptor signalling mechanisms revealed by structural pharmacology.
Nature. 2019 Jan;565(7740):454-459. doi: 10.1038/s41586-018-0832-5. Epub 2019 Jan 2.
5
THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels.
Br J Pharmacol. 2017 Dec;174 Suppl 1(Suppl Suppl 1):S195-S207. doi: 10.1111/bph.13881.
6
The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels.
Br J Pharmacol. 2015 Dec;172(24):5942-55. doi: 10.1111/bph.13351.
7
Crystal structure of a human GABAA receptor.
Nature. 2014 Aug 21;512(7514):270-5. doi: 10.1038/nature13293. Epub 2014 Jun 8.
8
A GABRA2 variant is associated with increased stimulation and 'high' following alcohol administration.
Alcohol Alcohol. 2014 Jan-Feb;49(1):1-9. doi: 10.1093/alcalc/agt163. Epub 2013 Oct 27.
9
α4βδ GABAA receptors and tonic inhibitory current during adolescence: effects on mood and synaptic plasticity.
Front Neural Circuits. 2013 Sep 3;7:135. doi: 10.3389/fncir.2013.00135. eCollection 2013.
10
Potency of GABA at human recombinant GABA(A) receptors expressed in Xenopus oocytes: a mini review.
Amino Acids. 2013 Apr;44(4):1139-49. doi: 10.1007/s00726-012-1456-y. Epub 2013 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验