Suppr超能文献

离子通道的光药理学:计算显微镜下的研究进展。

Photopharmacology of Ion Channels through the Light of the Computational Microscope.

机构信息

Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain.

Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.

出版信息

Int J Mol Sci. 2021 Nov 8;22(21):12072. doi: 10.3390/ijms222112072.

Abstract

The optical control and investigation of neuronal activity can be achieved and carried out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining a known ligand of the target protein and a photochromic group, as well as an additional electrophilic group for tethered ligands. Such a design strategy can be optimized by including structural data. In addition to experimental structures, computational methods (such as homology modeling, molecular docking, molecular dynamics and enhanced sampling techniques) can provide structural insights to guide photoswitch design and to understand the observed light-regulated effects. This review discusses the application of such structure-based computational methods to photoswitchable ligands targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target protein in a complex with the photoswitchable ligand can shed light on the different activities of the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as well as ion channel subtype selectivity. The examples presented here show how the integration of computational modeling with experimental data can greatly facilitate photoswitchable ligand design and optimization. Recent advances in structural biology, both experimental and computational, are expected to further strengthen this rational photopharmacology approach.

摘要

光控和神经元活动的研究可以通过光可切换配体来实现和进行。这些化合物采用模块化的方式设计,将目标蛋白的已知配体与光致变色基团以及用于连接配体的额外亲电基团结合在一起。这种设计策略可以通过包括结构数据进行优化。除了实验结构外,计算方法(如同源建模、分子对接、分子动力学和增强采样技术)可以提供结构见解,以指导光开关设计并理解观察到的光调控效应。这篇综述讨论了基于结构的计算方法在针对电压门控和配体门控离子通道的光可切换配体中的应用。结构映射可以帮助识别靠近配体结合口袋的可突变和共价附着的残基。与光可切换配体结合的靶蛋白的建模可以阐明两种光开关异构体的不同活性以及定点突变对光开关结合以及离子通道亚型选择性的影响。这里介绍的例子表明,如何将计算建模与实验数据相结合可以极大地促进光可切换配体的设计和优化。结构生物学的最新进展,无论是实验的还是计算的,预计将进一步加强这种合理的光药理学方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b47/8584574/f5bbde2114cd/ijms-22-12072-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验