Suppr超能文献

离子选择性共价有机框架膜作为催化多硫化物捕获剂以抑制锂硫电池中的氧化还原穿梭效应

Ion-Selective Covalent Organic Framework Membranes as a Catalytic Polysulfide Trap to Arrest the Redox Shuttle Effect in Lithium-Sulfur Batteries.

作者信息

Sun Kai, Wang Chen, Dong Yan, Guo Pengqian, Cheng Pu, Fu Yujun, Liu Dequan, He Deyan, Das Saikat, Negishi Yuichi

机构信息

School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China.

Department of Chemistry, Jilin University, Changchun 130012, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4079-4090. doi: 10.1021/acsami.1c20398. Epub 2022 Jan 10.

Abstract

In the wake of shaping the energy future through materials innovation, lithium-sulfur batteries (LSBs) are top-of-the-line energy storage system attributed to their high theoretical energy density and specific capacity inclusive of low material costs. Despite their strengths, LSBs suffer from the cross-over of soluble polysulfide redox species to the anode, entailing fast capacity fading and inferior cycling stability. Adding to the concern, the insulating character of polysulfides lends to sluggish reaction kinetics. To address these challenges, we construct optimized polysulfide blockers-cum-conversion catalysts by accommodating the battery separator with covalent organic framework@Graphene (COF@G) composites. We settle on a crystalline TAPP-ETTB COF in the interest of its nitrogen-enriched scaffold with a regular pore geometry, providing ample lithiophilic sites for strong chemisorption and catalytic effect to polysulfides. On another front, graphene enables high electron mobility, boosting the sulfur redox kinetics. Consequently, a lithium-sulfur battery with a TAPP-ETTB COF@G-based separator demonstrates a high reversible capacity of 1489.8 mA h g at 0.2 A g after the first cycle and good cyclic performance (920 mA h g after 400 cycles) together with excellent rate performance (827.7 mA h g at 2 A g). The scope and opportunities to harness the designability and synthetic structural control in crystalline organic materials is a promising domain at the interface of sustainable materials, energy storage, and Li-S chemistry.

摘要

通过材料创新塑造能源未来的背景下,锂硫电池(LSB)因其高理论能量密度、高比容量以及低材料成本而成为一流的储能系统。尽管具有诸多优势,但锂硫电池存在可溶性多硫化物氧化还原物种向阳极的交叉问题,导致快速的容量衰减和较差的循环稳定性。更令人担忧的是,多硫化物的绝缘特性导致反应动力学迟缓。为应对这些挑战,我们通过用共价有机框架@石墨烯(COF@G)复合材料修饰电池隔膜,构建了优化的多硫化物阻滞剂兼转换催化剂。我们选择了结晶性的TAPP - ETTB COF,因为其富含氮的支架具有规则的孔几何结构,为多硫化物提供了充足的亲锂位点以实现强化学吸附和催化作用。另一方面,石墨烯具有高电子迁移率,可促进硫氧化还原动力学。因此,基于TAPP - ETTB COF@G隔膜的锂硫电池在首次循环后,在0.2 A g电流密度下展现出1489.8 mA h g的高可逆容量,具有良好的循环性能(400次循环后为920 mA h g)以及优异的倍率性能(在2 A g电流密度下为827.7 mA h g)。利用结晶有机材料的可设计性和合成结构控制的范围和机会是可持续材料、储能和锂硫化学界面上一个很有前景的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验