Department of NanoEngineering, University of California, San Diego, La Jolla, California 92039, United States.
Department of Molecular Biology, RWTH-Aachen University, Aachen 52064, Germany.
ACS Appl Bio Mater. 2021 Dec 20;4(12):8309-8315. doi: 10.1021/acsabm.1c00838. Epub 2021 Nov 16.
Filamentous nanomaterials are flexible with a high aspect ratio, conferring unique mechanical, electromagnetic, and optical properties; promoting tissue penetration; and allowing the formation of hierarchical superstructures. The fabrication of synthetic nanofilaments with uniform properties is challenging, but this can be addressed by the use of filamentous plant viruses such as potato virus X (PVX), which are produced as monodisperse structures from a genetic template. To take advantage of PVX without risks to agriculture and the environment, it is necessary to inactivate the virus efficiently without disrupting its chemical and material properties. Herein, we report experiments showing that PVX can be completely inactivated by exposure to UV irradiation (0.5 J cm) or chemical treatment (1 mM β-propiolactone or 10 mM formalin) without interfering with the chemical addressability of lysine or cysteine residues, which are typically used as conjugation handles for virus nanoparticle functionalization.
丝状纳米材料具有柔韧性和高纵横比,赋予其独特的机械、电磁和光学性能;促进组织穿透;并允许形成分级超结构。然而,用具有均匀性能的合成纳米丝进行制造具有挑战性,但这可以通过使用丝状植物病毒来解决,例如马铃薯病毒 X(PVX),它可以从遗传模板中以单分散结构形式产生。为了在不影响农业和环境的情况下利用 PVX,有必要在不破坏其化学和材料特性的情况下有效地使病毒失活。在这里,我们报告了实验结果,表明 PVX 可以通过暴露于紫外线辐射(0.5 J cm)或化学处理(1 mM β-丙内酯或 10 mM 甲醛)完全失活,而不会干扰赖氨酸或半胱氨酸残基的化学可及性,这些残基通常用作病毒纳米颗粒功能化的缀合处理。
ACS Appl Bio Mater. 2021-12-20
Methods Mol Biol. 2023
J Struct Biol. 2017-12
Biomacromolecules. 2018-12-18
Methods Mol Biol. 2022
J Vis Exp. 2012-11-16
Front Plant Sci. 2019-2-19
Methods Mol Biol. 2018