Suppr超能文献

轴突导向的排列纳米纤维集成式分隔微流控神经元培养系统的开发。

Development of an Axon-Guiding Aligned Nanofiber-Integrated Compartmentalized Microfluidic Neuron Culture System.

机构信息

N.1 Institute for Health, National University of Singapore, 28 Medical Drive, #05-COR, 117456 Singapore.

Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.

出版信息

ACS Appl Bio Mater. 2021 Dec 20;4(12):8424-8432. doi: 10.1021/acsabm.1c00960. Epub 2021 Nov 15.

Abstract

Microfluidic-based neuron cell culture systems have recently gained a lot of attention due to their efficiency in supporting the spatial and temporal control of cellular microenvironments. However, the lack of axon guidance is the key limitation in current culture systems. To combat this, we have developed electrospun aligned nanofiber-integrated compartmentalized microfluidic neuron culture systems (NIMSs), where the nanofibers have enabled axonal guidance and stability. The resulting platform significantly improved axon alignment, length, and stability for both rat primary embryonic motor neurons (MNs) and dorsal root ganglia (DRG) neurons compared to the conventional glass-based microfluidic systems (GMSs). The results showed that axonal growth covered more than two times the area on the axonal chamber of NIMSs compared to the area covered for GMSs. Overall, this platform can be used as a valuable tool for fundamental neuroscience research, drug screening, and biomaterial testing.

摘要

基于微流控的神经元细胞培养系统由于其在支持细胞微环境的空间和时间控制方面的效率而受到广泛关注。然而,目前培养系统的关键限制是缺乏轴突导向。为了解决这个问题,我们开发了电纺定向纳米纤维集成的分区微流控神经元培养系统(NIMSs),其中纳米纤维实现了轴突导向和稳定性。与传统的基于玻璃的微流控系统(GMSs)相比,该平台显著提高了大鼠原代胚胎运动神经元(MNs)和背根神经节(DRG)神经元的轴突排列、长度和稳定性。结果表明,与 GMSs 覆盖的区域相比,NIMSs 的轴突室覆盖的轴突生长面积超过两倍。总的来说,该平台可作为基础神经科学研究、药物筛选和生物材料测试的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验