School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.
Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
ACS Appl Bio Mater. 2021 Aug 16;4(8):6125-6136. doi: 10.1021/acsabm.1c00473. Epub 2021 Jul 23.
Antibacterial treatment strategies using functional nanomaterials, such as photodynamic therapy, are urgently required to combat persistent small colony variant (SCV) bacteria. Using a stepwise approach involving thermolysis to form β-NaYF:Yb/Tm upconversion nanoparticles (UCNPs) and surface ligand exchange with cetyltrimethylammonium bromide (CTAB), followed by zeolite imidazolate framework-8 (ZIF-8) coating and conversion to zinc oxide (ZnO), β-NaYF:Yb/Tm@ZnO nanoparticles were synthesized. The direct synthesis of β-NaYF:Yb/Tm@ZIF-8 UCNPs proved problematic due to the hydrophobic nature of the as-synthesized material, which was shown by zeta potential measurements using dynamic light scattering (DLS). To facilitate deposition of a ZnO coating, the zeta potentials of (i) as-synthesized UCNPs, (ii) calcined UCNPs, (iii) polyvinylpyrrolidone (PVP), and (iv) CTAB-coated UCNPs were measured, which revealed the CTAB-coated UCNPs to be the most hydrophilic and the better-dispersed form in water. β-NaYF:Yb/Tm@ZIF-8 composites formed using the CTAB-coated UCNPs were then converted into β-NaYF:Yb/Tm@ZnO nanoparticles by calcination under carefully controlled conditions. Photoluminescence analysis confirmed the upconversion process for the UCNP core, which allows the β-NaYF:Yb/Tm@ZnO nanoparticles to photogenerate reactive oxygen species (ROS) when activated by near-infrared (NIR) radiation. The NIR-activated UCNPs@ZnO nanoparticles demonstrated potent efficacy against both (WCH-SK2) and its associated SCV form (0.67 and 0.76 log colony forming unit (CFU) reduction, respectively), which was attributed to ROS generated from the NIR activated β-NaYF:Yb/Tm@ZnO nanoparticles.
利用功能纳米材料(如光动力疗法)对抗持续性小菌落变异(SCV)细菌的抗菌治疗策略迫在眉睫。采用逐步方法,包括热解形成β-NaYF:Yb/Tm 上转换纳米粒子(UCNP)和与十六烷基三甲基溴化铵(CTAB)的表面配体交换,然后涂覆沸石咪唑酯骨架-8(ZIF-8)并转化为氧化锌(ZnO),合成了β-NaYF:Yb/Tm@ZnO 纳米粒子。由于合成材料的疏水性,直接合成β-NaYF:Yb/Tm@ZIF-8 UCNP 证明存在问题,这通过动态光散射(DLS)测量的zeta 电位得到证明。为了促进 ZnO 涂层的沉积,测量了(i)合成的 UCNP、(ii)煅烧的 UCNP、(iii)聚乙烯吡咯烷酮(PVP)和(iv)CTAB 涂覆的 UCNP 的 zeta 电位,结果表明 CTAB 涂覆的 UCNP 具有最高的亲水性和在水中更好的分散形式。然后,使用 CTAB 涂覆的 UCNP 形成的β-NaYF:Yb/Tm@ZIF-8 复合材料在仔细控制条件下煅烧转化为β-NaYF:Yb/Tm@ZnO 纳米粒子。光致发光分析证实了 UCNP 核的上转换过程,这使得β-NaYF:Yb/Tm@ZnO 纳米粒子在近红外(NIR)辐射激活时能够光生成活性氧物质(ROS)。NIR 激活的 UCNPs@ZnO 纳米粒子对(WCH-SK2)及其相关的 SCV 形式(分别减少 0.67 和 0.76 个对数集落形成单位(CFU))表现出强大的功效,这归因于 NIR 激活的β-NaYF:Yb/Tm@ZnO 纳米粒子产生的 ROS。
Mater Sci Eng C Mater Biol Appl. 2017-1-1
Methods Appl Fluoresc. 2023-5-30
Mater Sci Eng C Mater Biol Appl. 2016-9-29
ACS Appl Mater Interfaces. 2019-7-22
Nanomaterials (Basel). 2025-4-6