Suppr超能文献

《慢性肾脏病中的组学研究:聚焦预后与预测》。

OMICS in Chronic Kidney Disease: Focus on Prognosis and Prediction.

机构信息

Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy.

Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University, 88100 Catanzaro, Italy.

出版信息

Int J Mol Sci. 2021 Dec 29;23(1):336. doi: 10.3390/ijms23010336.

Abstract

Chronic kidney disease (CKD) patients are characterized by a high residual risk for cardiovascular (CV) events and CKD progression. This has prompted the implementation of new prognostic and predictive biomarkers with the aim of mitigating this risk. The 'omics' techniques, namely genomics, proteomics, metabolomics, and transcriptomics, are excellent candidates to provide a better understanding of pathophysiologic mechanisms of disease in CKD, to improve risk stratification of patients with respect to future cardiovascular events, and to identify CKD patients who are likely to respond to a treatment. Following such a strategy, a reliable risk of future events for a particular patient may be calculated and consequently the patient would also benefit from the best available treatment based on their risk profile. Moreover, a further step forward can be represented by the aggregation of multiple omics information by combining different techniques and/or different biological samples. This has already been shown to yield additional information by revealing with more accuracy the exact individual pathway of disease.

摘要

慢性肾脏病(CKD)患者具有发生心血管(CV)事件和 CKD 进展的高残余风险。这促使人们采用新的预后和预测生物标志物,以降低这种风险。“组学”技术,即基因组学、蛋白质组学、代谢组学和转录组学,是更好地了解 CKD 疾病病理生理机制、改善患者未来心血管事件风险分层以及识别可能对治疗有反应的 CKD 患者的优秀候选者。通过这种策略,可以计算出特定患者未来事件的可靠风险,从而根据其风险状况使患者受益于最佳可用治疗。此外,通过结合不同的技术和/或不同的生物样本来整合多个组学信息,还可以更进一步。这已经通过更准确地揭示疾病的确切个体途径来显示出更多的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed9c/8745343/48f66beea40a/ijms-23-00336-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验