College of Sciences, Massey University, Auckland 0632, New Zealand.
School of Engineering and Technology, Central Queensland University, Sydney, NSW 2000, Australia.
Sensors (Basel). 2021 Dec 22;22(1):32. doi: 10.3390/s22010032.
A smart public transport system is expected to be an integral part of our human lives to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing maintenance of the smart public transport system from cyberattacks are vitally important. To provide more comprehensive protection against potential cyberattacks, we propose a novel approach that combines blockchain technology and a deep learning method that can better protect the smart public transport system. By the creation of signed and verified blockchain blocks and chaining of hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the urgent and critical exchange of transport maintenance data across the stakeholders. The experimental results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS attacks achieving more than 95% 1- across all three datasets in average. The comparison of our approach with other similar methods confirms that our approach covers a more comprehensive range of security properties for the smart public transport system.
智能公共交通系统有望成为人类生活的一个组成部分,以提高我们的流动性并减少我们的碳足迹的影响。从网络攻击中确保智能公共交通系统的安全和持续维护至关重要。为了提供更全面的针对潜在网络攻击的保护,我们提出了一种新的方法,将区块链技术和深度学习方法相结合,可以更好地保护智能公共交通系统。通过创建签名和验证的区块链块,并对哈希块进行链接,我们的提案中的区块链可以抵御试图伪造与敏感运输维护数据相关的交易和数据的未授权完整性攻击。我们的提案中结合了自动编码器 (AE) 和多层感知器 (MLP) 的混合深度学习方法,可以有效地检测分布式拒绝服务 (DDoS) 攻击,这些攻击可能会阻止或阻止利益相关者之间紧急和关键的运输维护数据交换。在三个不同数据集(即 CICDDoS2019、CIC-IDS2017 和 BoT-IoT)上对混合深度学习进行的实验结果表明,我们的深度学习模型能够有效地检测到广泛的 DDoS 攻击,在所有三个数据集上的平均准确率超过 95%。我们的方法与其他类似方法的比较证实,我们的方法涵盖了智能公共交通系统更全面的安全属性。