Pandey Alok Kumar, Larrieu Tanguy, Dovillaire Guillaume, Kazamias Sophie, Guilbaud Olivier
Laboratoire Irène Joliot-Curie, Université Paris-Saclay, UMR CNRS, Rue Ampère, Bâtiment 200, 91898 Orsay, France.
Imagine Optic, 18, Rue Charles de Gaulle, 91400 Orsay, France.
Sensors (Basel). 2021 Dec 25;22(1):132. doi: 10.3390/s22010132.
Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light-matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in particular, single-shot amplitude, wavefront, and modal content characterization, remains a challenging task. Here, we report the single-shot amplitude, wavefront, and modal content characterization of ultrashort OV using a Shack-Hartmann wavefront sensor. These vortex beams are obtained using spiral phase plates (SPPs) that are frequently used for high-intensity applications. The reconstructed wavefronts display a helical structure compatible with the topological charge induced by the SPPs. We affirm the accuracy of the optical field reconstruction by the wavefront sensor through an excellent agreement between the numerically backpropagated and experimentally obtained intensity distribution at the waist. Consequently, through Laguerre-Gauss (LG) decomposition of the reconstructed fields, we reveal the radial and azimuthal mode composition of vortex beams under different conditions. The potential of our method is further illustrated by characterizing asymmetric Gaussian vortices carrying fractional average OAM, and a realtime topological charge measurement at a 10Hz repetition rate. These results can promote Shack-Hartmann wavefront sensing as a single-shot OV characterization tool.
携带轨道角动量(OAM)的光束,也被称为光学涡旋(OV),已在从量子通信到新型光与物质相互作用等领域引发了引人入胜的新进展。尽管已经出现了几种合成这些结构化光束的技术,但对它们的检测,尤其是单次幅度、波前和模态内容表征,仍然是一项具有挑战性的任务。在此,我们报告了使用夏克 - 哈特曼波前传感器对超短光学涡旋进行的单次幅度、波前和模态内容表征。这些涡旋光束是使用常用于高强度应用的螺旋相位板(SPP)获得的。重建的波前显示出与由螺旋相位板诱导的拓扑电荷兼容的螺旋结构。通过数值反向传播和实验获得的束腰处强度分布之间的极佳一致性,我们证实了波前传感器对光场重建的准确性。因此,通过对重建场进行拉盖尔 - 高斯(LG)分解,我们揭示了不同条件下涡旋光束的径向和方位角模式组成。通过对携带分数平均轨道角动量的非对称高斯涡旋进行表征以及以10赫兹重复频率进行实时拓扑电荷测量,进一步说明了我们方法的潜力。这些结果可以推动夏克 - 哈特曼波前传感成为一种单次光学涡旋表征工具。