Genser Alexander, Hautle Noel, Makridis Michail, Kouvelas Anastasios
Department of Civil, Environmental and Geomatic Engineering, Institute for Transport Planning and Systems, ETH Zurich, CH-8093 Zurich, Switzerland.
Sensors (Basel). 2021 Dec 26;22(1):144. doi: 10.3390/s22010144.
A reliable estimation of the traffic state in a network is essential, as it is the input of any traffic management strategy. The idea of using the same type of sensors along large networks is not feasible; as a result, data fusion from different sources for the same location should be performed. However, the problem of estimating the traffic state alongside combining input data from multiple sensors is complex for several reasons, such as variable specifications per sensor type, different noise levels, and heterogeneous data inputs. To assess sensor accuracy and propose a fusion methodology, we organized a video measurement campaign in an urban test area in Zurich, Switzerland. The work focuses on capturing traffic conditions regarding traffic flows and travel times. The video measurements are processed (a) manually for ground truth and (b) with an algorithm for license plate recognition. Additional processing of data from established thermal imaging cameras and the Google Distance Matrix allows for evaluating the various sensors' accuracy and robustness. Finally, we propose an estimation baseline MLR (multiple linear regression) model (5% of ground truth) that is compared to a final MLR model that fuses the 5% sample with conventional loop detector and traffic signal data. The comparison results with the ground truth demonstrate the efficiency and robustness of the proposed assessment and estimation methodology.
可靠地估计网络中的交通状态至关重要,因为它是任何交通管理策略的输入。在大型网络中使用同一类型传感器的想法不可行;因此,应针对同一位置对来自不同源的数据进行融合。然而,由于每个传感器类型的规格不同、噪声水平各异以及数据输入异构等多种原因,在结合来自多个传感器的输入数据的同时估计交通状态的问题很复杂。为了评估传感器精度并提出一种融合方法,我们在瑞士苏黎世的一个城市测试区域组织了一次视频测量活动。这项工作重点在于获取有关交通流量和出行时间的交通状况。视频测量经过如下处理:(a) 人工处理以获取地面实况,(b) 使用车牌识别算法进行处理。对来自既定热成像摄像机和谷歌距离矩阵的数据进行额外处理,有助于评估各种传感器的精度和稳健性。最后,我们提出一个估计基线MLR(多元线性回归)模型(地面实况的5%),并将其与最终的MLR模型进行比较,后者将5%的样本与传统环形探测器和交通信号数据进行融合。与地面实况的比较结果证明了所提出的评估和估计方法的有效性和稳健性。