Suppr超能文献

基于单输入多输出(SIMO)深度学习的混沌键控(DLCSK)通信系统设计

Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System.

作者信息

Mobini Majid, Kaddoum Georges, Herceg Marijan

机构信息

Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran.

Département de Génie Électrique, University of Québec, École de Technologie Supérieure, Montréal, QC H3C1K3, Canada.

出版信息

Sensors (Basel). 2022 Jan 3;22(1):333. doi: 10.3390/s22010333.

Abstract

This paper brings forward a Deep Learning (DL)-based Chaos Shift Keying (DLCSK) demodulation scheme to promote the capabilities of existing chaos-based wireless communication systems. In coherent Chaos Shift Keying (CSK) schemes, we need synchronization of chaotic sequences, which is still practically impossible in a disturbing environment. Moreover, the conventional Differential Chaos Shift Keying (DCSK) scheme has a drawback, that for each bit, half of the bit duration is spent sending non-information bearing reference samples. To deal with this drawback, a Long Short-Term Memory (LSTM)-based receiver is trained offline, using chaotic maps through a finite number of channel realizations, and then used for classifying online modulated signals. We presented that the proposed receiver can learn different chaotic maps and estimate channels implicitly, and then retrieves the transmitted messages without any need for chaos synchronization or reference signal transmissions. Simulation results for both the AWGN and Rayleigh fading channels show a remarkable BER performance improvement compared to the conventional DCSK scheme. The proposed DLCSK system will provide opportunities for a new class of receivers by leveraging the advantages of DL, such as effective serial and parallel connectivity. A Single Input Multiple Output (SIMO) architecture of the DLCSK receiver with excellent reliability is introduced to show its capabilities. The SIMO DLCSK benefits from a DL-based channel estimation approach, which makes this architecture simpler and more efficient for applications where channel estimation is problematic, such as massive MIMO, mmWave, and cloud-based communication systems.

摘要

本文提出了一种基于深度学习(DL)的混沌键控(DLCSK)解调方案,以提升现有基于混沌的无线通信系统的性能。在相干混沌键控(CSK)方案中,我们需要混沌序列同步,而在干扰环境中这在实际中仍然是不可能的。此外,传统的差分混沌键控(DCSK)方案有一个缺点,即对于每个比特,有一半的比特持续时间用于发送不承载信息的参考样本。为了解决这个缺点,一个基于长短期记忆(LSTM)的接收器在离线状态下进行训练,通过有限数量的信道实现使用混沌映射,然后用于在线分类调制信号。我们表明,所提出的接收器可以隐式地学习不同的混沌映射并估计信道,然后无需任何混沌同步或参考信号传输就能检索出发送的消息。与传统DCSK方案相比,加性高斯白噪声(AWGN)信道和瑞利衰落信道的仿真结果都显示出显著的误码率(BER)性能提升。所提出的DLCSK系统将通过利用深度学习的优势,如有效的串行和并行连接,为新型接收器提供机会。介绍了具有出色可靠性的DLCSK接收器的单输入多输出(SIMO)架构,以展示其性能。SIMO DLCSK受益于基于深度学习的信道估计方法,这使得该架构在信道估计有问题的应用中,如大规模多输入多输出(MIMO)、毫米波和基于云的通信系统中,更简单且更高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3079/8749677/a8579ba6ec34/sensors-22-00333-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验