Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France.
University of Strasbourg Institute for Advanced Studies (USIAS), 4 Rue Blaise Pascal, 67081 Strasbourg, France.
Molecules. 2021 Dec 23;27(1):62. doi: 10.3390/molecules27010062.
Surface enhanced infrared absorption spectroscopic studies (SEIRAS) as a technique to study biological molecules in extremely low concentrations is greatly evolving. In order to use the technique for identification of the structure and interactions of such biological molecules, it is necessary to identify the effects of the plasmonic electric-field enhancement on the spectral signature. In this study the spectral properties of 1,2-Dipalmitoyl-sn-glycero-3 phosphothioethanol (DPPTE) phospholipid immobilized on gold nanoantennas, specifically designed to enhance the vibrational fingerprints of lipid molecules were studied. An AFM study demonstrates an organization of the DPPTE phospholipid in bilayers on the nanoantenna structure. The spectral data were compared to SEIRAS active gold surfaces based on nanoparticles, plain gold and plain substrate (Si) for different temperatures. The shape of the infrared signals, the peak positions and their relative intensities were found to be sensitive to the type of surface and the presence of an enhancement. The strongest shifts in position and intensity were seen for the nanoantennas, and a smaller effect was seen for the DPPTE immobilized on gold nanoparticles. This information is crucial for interpretation of data obtained for biological molecules measured on such structures, for future application in nanodevices for biologically or medically relevant samples.
表面增强红外吸收光谱研究(SEIRAS)作为一种研究极低浓度生物分子的技术正在迅速发展。为了将该技术用于识别此类生物分子的结构和相互作用,有必要确定等离子体增强电场对光谱特征的影响。在这项研究中,研究了 1,2-二棕榈酰-sn-甘油-3 磷硫乙醇(DPPTE)磷脂固定在金纳米天线(专门设计用于增强脂质分子的振动指纹)上的光谱特性。原子力显微镜(AFM)研究表明,DPPTE 磷脂在纳米天线结构上以双层的形式存在。将光谱数据与基于纳米粒子、普通金和普通基底(Si)的 SEIRAS 活性金表面进行了比较,比较了不同温度下的光谱数据。发现红外信号的形状、峰位置及其相对强度对表面类型和增强的存在敏感。在纳米天线中观察到最强的位置和强度偏移,而在固定在金纳米粒子上的 DPPTE 中观察到的偏移较小。这些信息对于解释在这些结构上测量的生物分子获得的数据至关重要,对于未来在与生物或医学相关的样本的纳米器件中的应用至关重要。