Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA.
Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
Nat Commun. 2022 Jan 10;13(1):52. doi: 10.1038/s41467-021-27692-9.
Gasdermin D forms large, ~21 nm diameter pores in the plasma membrane to drive the cell death program pyroptosis. These pores are thought to be permanently open, and the resultant osmotic imbalance is thought to be highly damaging. Yet some cells mitigate and survive pore formation, suggesting an undiscovered layer of regulation over the function of these pores. However, no methods exist to directly reveal these mechanistic details. Here, we combine optogenetic tools, live cell fluorescence biosensing, and electrophysiology to demonstrate that gasdermin pores display phosphoinositide-dependent dynamics. We quantify repeated and fast opening-closing of these pores on the tens of seconds timescale, visualize the dynamic pore geometry, and identify the signaling that controls dynamic pore activity. The identification of this circuit allows pharmacological tuning of pyroptosis and control of inflammatory cytokine release by living cells.
Gasdermin D 在质膜上形成直径约 21nm 的大孔,以驱动细胞死亡程序细胞焦亡。这些孔被认为是永久开放的,由此产生的渗透压失衡被认为是高度破坏性的。然而,有些细胞减轻并存活下来,这表明这些孔的功能存在未被发现的调节层。然而,目前还没有方法可以直接揭示这些机制细节。在这里,我们结合光遗传学工具、活细胞荧光生物传感和电生理学,证明了 gasdermin 孔具有磷酸肌醇依赖性动力学。我们在数十秒的时间尺度上定量重复快速的孔开合,可视化动态孔几何形状,并确定控制动态孔活性的信号。该回路的鉴定允许通过活细胞对细胞焦亡进行药理学调节,并控制炎症细胞因子的释放。