Sprenkle R Tucker, Silvestri L G, Murillo M S, Bergeson S D
Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA.
Honeywell Quantum Solutions, 303 S Technology Ct, Broomfield, CO, 80021, USA.
Nat Commun. 2022 Jan 10;13(1):15. doi: 10.1038/s41467-021-27696-5.
New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.
诸如国家点火设施和直线加速器相干光源等新设施已经拓展了高能量密度物质的前沿领域。这些设施为探索物质的极端状态提供了前所未有的机会,范围从低温固态系统到高温、高密度等离子体,并应用于惯性约束聚变和天体物理学。然而,在我们对这些快速演化系统中物质特性的理解方面,仍然存在重大差距。特别是,强耦合库仑系统的非平衡输运特性仍然是一个悬而未决的问题。在这里,我们利用最近开发的双物种超冷中性等离子体,研究二元混合物中的离子 - 离子温度弛豫。我们将测量的弛豫率与原子模拟和一系列流行理论进行比较。我们的工作验证了模拟的假设和能力,并使该领域的理论模型失效。这项工作说明了一种在广泛条件下精确确定库仑混合物详细物质特性的方法。