Suppr超能文献

具有多元纵向数据的两阶段研究的设计与分析。

Design and analysis of two-phase studies with multivariate longitudinal data.

机构信息

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Biometrics. 2023 Jun;79(2):1420-1432. doi: 10.1111/biom.13616. Epub 2022 Jan 28.

Abstract

Two-phase studies are crucial when outcome and covariate data are available in a first-phase sample (e.g., a cohort study), but costs associated with retrospective ascertainment of a novel exposure limit the size of the second-phase sample, in whom the exposure is collected. For longitudinal outcomes, one class of two-phase studies stratifies subjects based on an outcome vector summary (e.g., an average or a slope over time) and oversamples subjects in the extreme value strata while undersampling subjects in the medium-value stratum. Based on the choice of the summary, two-phase studies for longitudinal data can increase efficiency of time-varying and/or time-fixed exposure parameter estimates. In this manuscript, we extend efficient, two-phase study designs to multivariate longitudinal continuous outcomes, and we detail two analysis approaches. The first approach is a multiple imputation analysis that combines complete data from subjects selected for phase two with the incomplete data from those not selected. The second approach is a conditional maximum likelihood analysis that is intended for applications where only data from subjects selected for phase two are available. Importantly, we show that both approaches can be applied to secondary analyses of previously conducted two-phase studies. We examine finite sample operating characteristics of the two approaches and use the Lung Health Study (Connett et al. (1993), Controlled Clinical Trials, 14, 3S-19S) to examine genetic associations with lung function decline over time.

摘要

当第一阶段样本(例如队列研究)中存在结局和协变量数据时,两阶段研究至关重要,但由于回顾性确定新暴露的成本限制了第二阶段样本的大小,在第二阶段样本中收集暴露信息。对于纵向结局,两阶段研究的一类方法基于结局向量总结(例如平均值或随时间的斜率)对受试者进行分层,并对极端值分层中的受试者进行过采样,而对中值分层中的受试者进行欠采样。基于总结的选择,用于纵向数据的两阶段研究可以提高时变和/或时定暴露参数估计的效率。在本文中,我们将高效的两阶段研究设计扩展到多变量纵向连续结局,并详细介绍了两种分析方法。第一种方法是多重插补分析,它将第二阶段选中的受试者的完整数据与未选中的受试者的不完整数据相结合。第二种方法是条件最大似然分析,适用于仅可获得第二阶段选中的受试者数据的应用。重要的是,我们表明这两种方法都可以应用于先前进行的两阶段研究的二次分析。我们检查了这两种方法的有限样本操作特性,并使用 Lung Health Study(Connett 等人(1993),对照临床试验,14,3S-19S)来研究与随时间推移的肺功能下降相关的遗传关联。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验