Suppr超能文献

受斯莱特规则启发的用于核心激发态的高效基组。

Efficient basis sets for core-excited states motivated by Slater's rules.

作者信息

Qian Jin, Crumlin Ethan J, Prendergast David

机构信息

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Phys Chem Chem Phys. 2022 Jan 26;24(4):2243-2250. doi: 10.1039/d1cp03931h.

Abstract

X-Ray photoemission spectroscopy is a commonly applied characterization technique that probes the local chemistry of atoms in molecules and materials the photoexcitation of electrons from atomic core orbitals. These measurements can be interpreted by comparison with previous literature or through the calculation of core-electron binding energies (CEBEs) for model systems. However, physically and numerically accurate description of the core-excited electronic structures demands specializations beyond routine ground state setups. Inspired by Slater's rules, we focus on developing computationally efficient and physically motivated contractions to reproduce the core-excited atomic orbitals which led to improved numerical accuracy of calculated CEBEs. When applied to carbon 1s excitations in a wide range of molecules, these core-excited basis sets produce total energy differences (ΔSCF) using a hybrid exact-exchange density functional (B3LYP) that can reproduce core-excitation energies within experimental accuracy (∼0.1 eV). Due to missing relativistic effects, heavier elements (N, O) exhibit slightly larger systematic absolute errors, but still maintain a satisfactory 0.2 eV mean average error for relative CEBEs. We also connect the known variability in the core level binding energy with local atomic charge to demonstrate how the transferability of a given model should be measured against a diverse test set. We conclude by exploring one outlier, CO, and the outlook for extending this approach to other elements.

摘要

X射线光电子能谱是一种常用的表征技术,它通过原子芯轨道电子的光激发来探测分子和材料中原子的局部化学性质。这些测量结果可以通过与先前文献比较或通过计算模型系统的芯电子结合能(CEBEs)来解释。然而,对芯激发电子结构进行物理和数值上准确的描述需要超越常规基态设置的专门知识。受斯莱特规则的启发,我们专注于开发计算效率高且具有物理动机的收缩方法,以重现芯激发原子轨道,从而提高计算CEBEs的数值精度。当应用于多种分子中的碳1s激发时,这些芯激发基组使用混合精确交换密度泛函(B3LYP)产生总能差(ΔSCF),该泛函能够在实验精度(约0.1 eV)内重现芯激发能。由于缺少相对论效应,较重元素(N、O)表现出稍大的系统绝对误差,但对于相对CEBEs仍保持令人满意的0.2 eV平均误差。我们还将芯能级结合能的已知变化与局部原子电荷联系起来,以展示应如何针对不同的测试集来衡量给定模型的可转移性。我们通过研究一个异常值CO以及将这种方法扩展到其他元素的前景来得出结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验