Suppr超能文献

用于抑制致病性大肠杆菌的光激活氧化模拟纳米酶

Light-activated oxidize-mimicking nanozyme for inhibition of pathogenic Escherichia coli.

作者信息

Loukanov Alexandre, Kuribara Ayano, Nikolova Svetla, Saito Masakazu

机构信息

Department of Materials Engineering, National Institute of Technology, Gunma College, Maebashi, Gunma, Japan.

Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria.

出版信息

Microsc Res Tech. 2022 May;85(5):1949-1955. doi: 10.1002/jemt.24056. Epub 2022 Jan 11.

Abstract

Here we demonstrate the nanozyme properties of histidine-containing carbon nanodots as externally tunable antibacterial agents through irradiation with visible (VIS) light. The correlative (light and electron) microscopic analysis of treated Escherichia coli O157:H7 revealed that the positive charged carbon nanoparticles might readily adsorb at slightly acid pH on the negative charged cellular envelope of bacteria, and thus, inhibit their growth with over 80% efficiency under illumination with VIS light. The reason was that under VIS irradiation in the range 400-500 nm the adsorbed nanoparticles behaved as effective oxidase-mimicking enzymes and generated reactive oxygen species on the labeled cells. Thus, the light-activated artificial nanozyme caused serious physical damaging of bacterial envelope, which was leading to irreversible cellular inhibition. The outcomes of this study are likely to broaden the scope of designed photoactive carbon nanozymes as powerful antibacterial agents against the emergence of antibiotic and multidrug-resistant strains, as well as proposing of new strategies for infection control.

摘要

在此,我们展示了含组氨酸的碳纳米点的纳米酶特性,其可作为通过可见光(VIS)照射实现外部可调的抗菌剂。对经处理的大肠杆菌O157:H7进行的相关(光学和电子)显微镜分析表明,带正电荷的碳纳米颗粒在略酸性pH值下可能易于吸附在带负电荷的细菌细胞包膜上,因此,在可见光照射下,其抑制细菌生长的效率超过80%。原因是在400 - 500nm范围内的可见光照射下,吸附的纳米颗粒表现为有效的模拟氧化酶,并在标记的细胞上产生活性氧。因此,光激活的人工纳米酶对细菌包膜造成了严重的物理损伤,导致细胞不可逆的抑制。这项研究的结果可能会拓宽设计光活性碳纳米酶的范围,使其成为对抗抗生素和多重耐药菌株出现的强大抗菌剂,并为感染控制提出新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验